Stationary map coloring
Omer Angel; Itai Benjamini; Ori Gurel-Gurevich; Tom Meyerovitch; Ron Peled
Annales de l'I.H.P. Probabilités et statistiques (2012)
- Volume: 48, Issue: 2, page 327-342
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topAngel, Omer, et al. "Stationary map coloring." Annales de l'I.H.P. Probabilités et statistiques 48.2 (2012): 327-342. <http://eudml.org/doc/272076>.
@article{Angel2012,
abstract = {We consider a planar Poisson process and its associated Voronoi map. We show that there is a proper coloring with 6 colors of the map which is a deterministic isometry-equivariant function of the Poisson process. As part of the proof we show that the 6-core of the corresponding Delaunay triangulation is empty. Generalizations, extensions and some open questions are discussed.},
author = {Angel, Omer, Benjamini, Itai, Gurel-Gurevich, Ori, Meyerovitch, Tom, Peled, Ron},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Poisson process; graph coloring; planar graphs; Voronoi tessellation; Delaunay triangulation; percolation},
language = {eng},
number = {2},
pages = {327-342},
publisher = {Gauthier-Villars},
title = {Stationary map coloring},
url = {http://eudml.org/doc/272076},
volume = {48},
year = {2012},
}
TY - JOUR
AU - Angel, Omer
AU - Benjamini, Itai
AU - Gurel-Gurevich, Ori
AU - Meyerovitch, Tom
AU - Peled, Ron
TI - Stationary map coloring
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2012
PB - Gauthier-Villars
VL - 48
IS - 2
SP - 327
EP - 342
AB - We consider a planar Poisson process and its associated Voronoi map. We show that there is a proper coloring with 6 colors of the map which is a deterministic isometry-equivariant function of the Poisson process. As part of the proof we show that the 6-core of the corresponding Delaunay triangulation is empty. Generalizations, extensions and some open questions are discussed.
LA - eng
KW - Poisson process; graph coloring; planar graphs; Voronoi tessellation; Delaunay triangulation; percolation
UR - http://eudml.org/doc/272076
ER -
References
top- [1] O. Angel, G. Amir and A. Holroyd. Multi-color matching. Unpublished manuscript.
- [2] O. Angel, A. Holroyd and T. Soo. Deterministic thinning of finite Poisson processes. Proc. Amer. Math. Soc.139 (2011) 707–720. Zbl1208.60047MR2736350
- [3] K. Ball. Poisson thinning by monotone factors. Electron. Comm. Probab. 10 (2005) 60–69 (electronic). Zbl1110.60050MR2133893
- [4] I. Benjamini, A. Holroyd, O. Schramm and D. Wilson. Finitary coloring. Unpublished manuscript.
- [5] B. Bollobás and O. Riordan. The critical probability for random Voronoi percolation in the plane is 1/2. Probab. Theory Related Fields136 (2006) 417–468. Zbl1100.60054MR2257131
- [6] S. Chatterjee, R. Peled, Y. Peres and D. Romik. Phase transitions in gravitational allocation. Preprint. Available at http://arxiv.org/abs/0903.4647. Zbl1209.60008
- [7] S. Chatterjee, R. Peled, Y. Peres and D. Romik. Gravitational allocation to Poisson points. Ann. of Math. (2) 172 (2010) 617–671. Zbl1206.60013MR2680428
- [8] D. J. Daley and G. Last. Descending chains, the lilypond model, and mutual-nearest-neighbour matching. Adv. in Appl. Probab.37 (2005) 604–628. Zbl1078.60038
- [9] M. Deijfen and R. Meester. Generating stationary random graphs on ℤ with prescribed independent, identically distributed degrees. Adv. in Appl. Probab.38 (2006) 287–298. Zbl1102.05054MR2264945
- [10] A. K. Dewdney and J. K. Vranch. A convex partition of R3 with applications to Crum’s problem and Knuth’s post-office problem. Utilitas Math.12 (1977) 193–199. Zbl0367.52004
- [11] C. Hoffman, A. E. Holroyd and Y. Peres. A stable marriage of Poisson and Lebesgue. Ann. Probab.34 (2006) 1241–1272. Zbl1111.60008
- [12] C. Hoffman, A. E. Holroyd and Y. Peres. Tail bounds for the stable marriage of Poisson and Lebesgue. Canad. J. Math.61 (2009) 1279–1299. Zbl1191.60015
- [13] A. Holroyd, R. Lyons and T. Soo. Poisson splitting by factors. Ann. Probab. To appear. Available at http://arxiv.org/abs/0908.3409. Zbl1277.60087
- [14] A. Holroyd, R. Pemantle, Y. Peres and O. Schramm. Poisson matching. Ann. Inst. H. Poincaré Probab. Statist.45 (2009) 266–287. Zbl1175.60012MR2500239
- [15] A. E. Holroyd and Y. Peres. Trees and matchings from point processes. Electron. Comm. Probab. 8 (2003) 17–27 (electronic). Zbl1060.60048MR1961286
- [16] A. E. Holroyd and Y. Peres. Extra heads and invariant allocations. Ann. Probab.33 (2005) 31–52. Zbl1097.60032MR2118858
- [17] G. Kozma. Private communication, 2007.
- [18] M. Krikun. Connected allocation to Poisson points in ℝ2. Electron. Comm. Probab. 12 (2007) 140–145 (electronic). Zbl1128.60012MR2318161
- [19] K. Kunen. Set Theory: An Introduction to Independence Proofs. Studies in Logic and the Foundations of Mathematics 102. North-Holland, Amsterdam, 1980. Zbl0443.03021MR597342
- [20] T. M. Liggett, R. H. Schonmann and A. M. Stacey. Domination by product measures. Ann. Probab.25 (1997) 71–95. Zbl0882.60046MR1428500
- [21] R. Lyons. Private communication, 2007.
- [22] F. P. Preparata. Steps into computational geometry. Technical report, Coordinated Science Laboratory, Univ. Illinois, 1977.
- [23] A. Timár. Invariant colorings of random planar graphs. Preprint. Available at arXiv:0909.1091. Zbl1223.05086
- [24] A. Timár. Invariant matchings of exponential tail on coin flips in ℤd. Preprint. Available at arXiv:0909.1090.
- [25] A. Zvavitch. The critical probability for Voronoi percolation. Master’s thesis, Weizmann Institute of Science, 1996. Available at http://www.math.kent.edu/~zvavitch/.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.