Genealogy of flows of continuous-state branching processes via flows of partitions and the Eve property
Annales de l'I.H.P. Probabilités et statistiques (2014)
- Volume: 50, Issue: 3, page 732-769
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topLabbé, Cyril. "Genealogy of flows of continuous-state branching processes via flows of partitions and the Eve property." Annales de l'I.H.P. Probabilités et statistiques 50.3 (2014): 732-769. <http://eudml.org/doc/272077>.
@article{Labbé2014,
abstract = {We encode the genealogy of a continuous-state branching process associated with a branching mechanism $\varPsi $ – or $\varPsi \mbox\{-CSBP\}$ in short – using a stochastic flow of partitions. This encoding holds for all branching mechanisms and appears as a very tractable object to deal with asymptotic behaviours and convergences. In particular we study the so-called Eve property – the existence of an ancestor from which the entire population descends asymptotically – and give a necessary and sufficient condition on the $\varPsi \mbox\{-CSBP\}$ for this property to hold. Finally, we show that the flow of partitions unifies the lookdown representation and the flow of subordinators when the Eve property holds.},
author = {Labbé, Cyril},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {continuous-state branching process; measure-valued process; genealogy; partition; stochastic flow; lookdown process; subordinator; EVE; Eve property},
language = {eng},
number = {3},
pages = {732-769},
publisher = {Gauthier-Villars},
title = {Genealogy of flows of continuous-state branching processes via flows of partitions and the Eve property},
url = {http://eudml.org/doc/272077},
volume = {50},
year = {2014},
}
TY - JOUR
AU - Labbé, Cyril
TI - Genealogy of flows of continuous-state branching processes via flows of partitions and the Eve property
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2014
PB - Gauthier-Villars
VL - 50
IS - 3
SP - 732
EP - 769
AB - We encode the genealogy of a continuous-state branching process associated with a branching mechanism $\varPsi $ – or $\varPsi \mbox{-CSBP}$ in short – using a stochastic flow of partitions. This encoding holds for all branching mechanisms and appears as a very tractable object to deal with asymptotic behaviours and convergences. In particular we study the so-called Eve property – the existence of an ancestor from which the entire population descends asymptotically – and give a necessary and sufficient condition on the $\varPsi \mbox{-CSBP}$ for this property to hold. Finally, we show that the flow of partitions unifies the lookdown representation and the flow of subordinators when the Eve property holds.
LA - eng
KW - continuous-state branching process; measure-valued process; genealogy; partition; stochastic flow; lookdown process; subordinator; EVE; Eve property
UR - http://eudml.org/doc/272077
ER -
References
top- [1] D. Aldous. The continuum random tree. I. Ann. Probab.19 (1991) 1–28. Zbl0722.60013MR1085326
- [2] J. Bertoin. Random Fragmentation and Coagulation Processes. Cambridge Studies in Advanced Mathematics 102. Cambridge Univ. Press, Cambridge, 2006. Zbl1107.60002MR2253162
- [3] J. Bertoin, J. Fontbona and S. Martínez. On prolific individuals in a supercritical continuous-state branching process. J. Appl. Probab.45 (2008) 714–726. Zbl1154.60066MR2455180
- [4] J. Bertoin and J.-F. Le Gall. The Bolthausen–Sznitman coalescent and the genealogy of continuous-state branching processes. Probab. Theory Related Fields117 (2000) 249–266. Zbl0963.60086MR1771663
- [5] J. Bertoin and J.-F. Le Gall. Stochastic flows associated to coalescent processes. Probab. Theory Related Fields126 (2003) 261–288. Zbl1023.92018MR1990057
- [6] J. Bertoin and J.-F. Le Gall. Stochastic flows associated to coalescent processes. III. Limit theorems. Illinois J. Math. 50 (2006) 147–181. Zbl1110.60026MR2247827
- [7] M. Birkner, J. Blath, M. Capaldo, A. M. Etheridge, M. Möhle, J. Schweinsberg and A. Wakolbinger. Alpha-stable branching and beta-coalescents. Electron. J. Probab.10 (2005) 303–325. Zbl1066.60072MR2120246
- [8] M.-E. Caballero, A. Lambert and G. Uribe Bravo. Proof(s) of the Lamperti representation of continuous-state branching processes. Probab. Surv.6 (2009) 62–89. Zbl1194.60053MR2592395
- [9] D. A. Dawson. Measure-Valued Markov Processes. Lecture Notes in Math. 1541. Springer, Berlin, 1993. Zbl0799.60080MR1242575
- [10] D. A. Dawson and E. A. Perkins. Historical processes. Mem. Amer. Math. Soc. 93 (1991) iv+179. Zbl0754.60062MR1079034
- [11] P. Donnelly and T. G. Kurtz. Particle representations for measure-valued population models. Ann. Probab.27 (1999) 166–205. Zbl0956.60081MR1681126
- [12] T. Duquesne and C. Labbé. On the Eve property for CSBP. Preprint, 2013. Available at arXiv:1305.6502. Zbl1287.60100MR3164759
- [13] T. Duquesne and J.-F. Le Gall. Random trees, Lévy processes and spatial branching processes. Astérisque 281 (2002) vi+147. Zbl1037.60074MR1954248
- [14] T. Duquesne and M. Winkel. Growth of Lévy trees. Probab. Theory Related Fields139 (2007) 313–371. Zbl1126.60068MR2322700
- [15] N. El Karoui and S. Roelly. Propriétés de martingales, explosion et représentation de Lévy-Khintchine d’une classe de processus de branchement à valeurs mesures. Stochastic Process. Appl.38 (1991) 239–266. Zbl0743.60081MR1119983
- [16] A. Greven, P. Pfaffelhuber and A. Winter. Tree-valued resampling dynamics martingale problems and applications. Probab. Theory Related Fields155 (2013) 789–838. Zbl06162381MR3034793
- [17] A. Greven, L. Popovic and A. Winter. Genealogy of catalytic branching models. Ann. Appl. Probab.19 (2009) 1232–1272. Zbl1178.60057MR2537365
- [18] D. R. Grey. Asymptotic behaviour of continuous time, continuous state-space branching processes. J. App. Probab.11 (1974) 669–677. Zbl0301.60060MR408016
- [19] J. Jacod and A. N. Shiryaev. Limit Theorems for Stochastic Processes, 2nd edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 288. Springer-Verlag, Berlin, 2003. Zbl1018.60002MR1943877
- [20] M. Jiřina. Stochastic branching processes with continuous state space. Czechoslovak Math. J.8 (1958) 292–313. Zbl0168.38602MR101554
- [21] O. Kallenberg. Foundations of Modern Probability, 2nd edition. Probability and Its Applications (New York). Springer-Verlag, New York, 2002. Zbl0892.60001MR1876169
- [22] C. Labbé. From flows of Lambda Fleming–Viot processes to lookdown processes via flows of partitions. Preprint, 2011. Available at arXiv:1107.3419. Zbl1334.60152
- [23] J.-F. Le Gall and Y. Le Jan. Branching processes in Lévy processes: The exploration process. Ann. Probab.26 (1998) 213–252. Zbl0948.60071MR1617047
- [24] J. Pitman. Coalescents with multiple collisions. Ann. Probab.27 (1999) 1870–1902. Zbl0963.60079MR1742892
- [25] M. Silverstein. A new approach to local times. J. Math. Mech.17 (1968) 1023–1054. Zbl0184.41101MR226734
- [26] R. Tribe. The behavior of superprocesses near extinction. Ann. Probab.20 (1992) 286–311. Zbl0749.60046MR1143421
- [27] S. Watanabe. A limit theorem of branching processes and continuous state branching processes. J. Math. Kyoto Univ.8 (1968) 141–167. Zbl0159.46201MR237008
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.