On bilinear forms based on the resolvent of large random matrices
Walid Hachem; Philippe Loubaton; Jamal Najim; Pascal Vallet
Annales de l'I.H.P. Probabilités et statistiques (2013)
- Volume: 49, Issue: 1, page 36-63
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] C. Artigue and P. Loubaton. On the precoder design of flat fading MIMO systems equipped with MMSE receivers: A large-system approach. IEEE Trans. Inform. Theory57 (2011) 4138–4155. MR2840447
- [2] Z. D. Bai, B. Q. Miao and G. M. Pan. On asymptotics of eigenvectors of large sample covariance matrix. Ann. Probab.35 (2007) 1532–1572. Zbl1162.15012MR2330979
- [3] Z. D. Bai and J. W. Silverstein. No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices. Ann. Probab.26 (1998) 316–345. Zbl0937.60017MR1617051
- [4] Z. D. Bai and J. W. Silverstein. Exact separation of eigenvalues of large-dimensional sample covariance matrices. Ann. Probab.27 (1999) 1536–1555. Zbl0964.60041MR1733159
- [5] Z. Bai and J. W. Silverstein. No eigenvalues outside the support of the limiting spectral distribution of information-plus-noise type matrices. Random Matrices Theory Appl. 1 (2012) 1150004. Zbl1248.15028MR2930382
- [6] F. Benaych-Georges and R. N. Rao. The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices. Preprint, 2009. Available at arXiv:0910.2120. Zbl1226.15023
- [7] R. B. Dozier and J. W. Silverstein. On the empirical distribution of eigenvalues of large dimensional information-plus-noise-type matrices. J. Multivariate Anal.98 (2007) 678–694. Zbl1115.60035MR2322123
- [8] M. Capitaine, C. Donati-Martin and D. Féral. The largest eigenvalues of finite rank deformation of large Wigner matrices: Convergence and nonuniversality of the fluctuations. Ann. Probab.37 (2009) 1–47. Zbl1163.15026MR2489158
- [9] J. Dumont, W. Hachem, S. Lasaulce, P. Loubaton and J. Najim. On the capacity achieving covariance matrix for Rician MIMO channels: An asymptotic approach. IEEE Trans. Inform. Theory56 (2010) 1048–1069. MR2723661
- [10] L. Erdös, H.-T. Yau and J. Yin. Rigidity of eigenvalues of generalized Wigner matrices. Unpublished manuscript, 2010. Available at[4] http://arxiv.org/pdf/1007.4652. Zbl1238.15017MR2871147
- [11] V. L. Girko. An Introduction to Statistical Analysis of Random Arrays. VSP, Utrecht, 1998. Zbl0934.62055MR1694087
- [12] U. Haagerup and S. Thorbjørnsen. A new application of random matrices: is not a group. Ann. of Math. (2) 162 (2005) 711–775. Zbl1103.46032MR2183281
- [13] W. Hachem, M. Kharouf, J. Najim and J. Silverstein. A CLT for information-theoretic statistics of non-centered Gram random matrices. Random Matrices Theory Appl. 1 (2012) 1150010. Zbl1262.15039MR2934716
- [14] W. Hachem, P. Loubaton and J. Najim. The empirical distribution of the eigenvalues of a Gram matrix with a given variance profile. Ann. Inst. Henri Poincaré Probab. Stat.42 (2006) 649–670. Zbl1109.15021MR2269232
- [15] W. Hachem, P. Loubaton and J. Najim. Deterministic equivalents for certain functionals of large random matrices. Ann. Appl. Probab.17 (2007) 875–930. Zbl1181.15043MR2326235
- [16] R. A. Horn and C. R. Johnson. Topics in Matrix Analysis. Cambridge Univ. Press, Cambridge, 1994. Zbl0801.15001MR1288752
- [17] A. Kammoun, M. Kharouf, W. Hachem, J. Najim and A. El Kharroubi. On the fluctuations of the mutual information for non centered MIMO channels: The non Gaussian case. In Proc. IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2010.
- [18] V. A. Marčenko and L. A. Pastur. Distribution of eigenvalues in certain sets of random matrices. Mat. Sb. (N.S.) 72 (1967) 507–536. Zbl0152.16101MR208649
- [19] X. Mestre. Improved estimation of eigenvalues and eigenvectors of covariance matrices using their sample estimates. IEEE Trans. Inform. Theory54 (2008) 5113–5129. Zbl1318.62191MR2589886
- [20] X. Mestre. On the asymptotic behavior of the sample estimates of eigenvalues and eigenvectors of covariance matrices. IEEE Trans. Signal Process.56 (2008) 5353–5368. MR2472837
- [21] X. Mestre and M. A. Lagunas. Modified subspace algorithms for DOA estimation with large arrays. IEEE Trans. Signal Process.56 (2008) 598–614. MR2445537
- [22] W. Rudin. Real and Complex Analysis, 3rd edition. McGraw-Hill, New York, 1986. Zbl0278.26001
- [23] J. W. Silverstein. Strong convergence of the empirical distribution of eigenvalues of large-dimensional random matrices. J. Multivariate Anal.55 (1995) 331–339. Zbl0851.62015MR1370408
- [24] J. W. Silverstein and Z. D. Bai. On the empirical distribution of eigenvalues of a class of large-dimensional random matrices. J. Multivariate Anal.54 (1995) 175–192. Zbl0833.60038MR1345534
- [25] P. Vallet, P. Loubaton and X. Mestre. Improved subspace estimation for multivariate observations of high dimension: The deterministic signals case. IEEE Trans. Inform. Theory58 (2012) 1043–1068. MR2918009