Nonconventional limit theorems in averaging
Annales de l'I.H.P. Probabilités et statistiques (2014)
- Volume: 50, Issue: 1, page 236-255
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topKifer, Yuri. "Nonconventional limit theorems in averaging." Annales de l'I.H.P. Probabilités et statistiques 50.1 (2014): 236-255. <http://eudml.org/doc/272087>.
@article{Kifer2014,
abstract = {We consider “nonconventional” averaging setup in the form $\frac\{\mathrm \{d\}X^\{\varepsilon \}(t)\}\{\mathrm \{d\}t\}=\varepsilon B(X^\{\varepsilon \}(t)$, $\varXi (q_\{1\}(t)),\varXi (q_\{2\}(t)),\ldots ,\varXi (q_\{\ell \}(t)))$ where $\varXi (t)$, $t\ge 0$ is either a stochastic process or a dynamical system with sufficiently fast mixing while $q_\{j\}(t)=\{\alpha \}_\{j\}t$, $\{\alpha \}_\{1\}<\{\alpha \}_\{2\}<\cdots <\{\alpha \}_\{k\}$ and $q_\{j\}$, $j=k+1,\ldots ,\ell $ grow faster than linearly. We show that the properly normalized error term in the “nonconventional” averaging principle is asymptotically Gaussian.},
author = {Kifer, Yuri},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {averaging; limit theorems; martingales; hyperbolic dynamical systems},
language = {eng},
number = {1},
pages = {236-255},
publisher = {Gauthier-Villars},
title = {Nonconventional limit theorems in averaging},
url = {http://eudml.org/doc/272087},
volume = {50},
year = {2014},
}
TY - JOUR
AU - Kifer, Yuri
TI - Nonconventional limit theorems in averaging
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2014
PB - Gauthier-Villars
VL - 50
IS - 1
SP - 236
EP - 255
AB - We consider “nonconventional” averaging setup in the form $\frac{\mathrm {d}X^{\varepsilon }(t)}{\mathrm {d}t}=\varepsilon B(X^{\varepsilon }(t)$, $\varXi (q_{1}(t)),\varXi (q_{2}(t)),\ldots ,\varXi (q_{\ell }(t)))$ where $\varXi (t)$, $t\ge 0$ is either a stochastic process or a dynamical system with sufficiently fast mixing while $q_{j}(t)={\alpha }_{j}t$, ${\alpha }_{1}<{\alpha }_{2}<\cdots <{\alpha }_{k}$ and $q_{j}$, $j=k+1,\ldots ,\ell $ grow faster than linearly. We show that the properly normalized error term in the “nonconventional” averaging principle is asymptotically Gaussian.
LA - eng
KW - averaging; limit theorems; martingales; hyperbolic dynamical systems
UR - http://eudml.org/doc/272087
ER -
References
top- [1] I. Assani. Multiple recurrence and almost sure convergence for weakly mixing dynamical systems. Israel J. Math.103 (1998) 111–124. Zbl0920.28011MR1613556
- [2] V. Bergelson. Weakly mixing PET. Ergodic Theory Dynam. Systems7 (1987) 337–349. Zbl0645.28012MR912373
- [3] R. Bowen. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in Math. 470. Springer, Berlin, 1975. Zbl0308.28010MR442989
- [4] A. N. Borodin. A limit theorem for solutions of differential equations with random right-hand side. Theory Probab. Appl.22 (1977) 482–497. Zbl0412.60067MR517995
- [5] R. C. Bradley. Introduction to Strong Mixing Conditions. Kendrick Press, Heber City, 2007. Zbl1134.60004
- [6] V. Bergelson, A. Leibman and C. G. Moreira. From discrete-to continuous time ergodic theorems. Ergodic Theory Dynam. Systems.32 (2012) 383–426. Zbl1251.37004MR2901353
- [7] D. Dolgopyat. On decay of correlations in Anosov flows. Ann. of Math. (2) 147 (1998) 357–390. Zbl0911.58029MR1626749
- [8] D. Dolgopyat. Limit theorems for partially hyperbolic systems. Trans. Amer. Math. Soc.356 (2003) 1637–1689. Zbl1031.37031MR2034323
- [9] D. Dolgopyat. Averaging and invariant measures. Mosc. Math. J.5 (2005) 537–576. Zbl05140621MR2241812
- [10] J. Doob. Stochastic Processes. Wiley, New York, 1953. Zbl0696.60003MR58896
- [11] D. Dolgopyat and C. Liverani. Energy transfer in a fast–slow Hamiltonian system. Comm. Math. Phys.308 (2011) 201–225. Zbl1235.82065MR2842975
- [12] H. Furstenberg. Nonconventional ergodic averages. Proc. Sympos Pure Math.50 (1990) 43–56. Zbl0711.28006MR1067751
- [13] M. Field, I. Melbourne and A. Torok. Decay of correlations, central limit theorems and approximation by Brownian motion for compact Lie group extensions. Ergodic Theory Dynam. Systems23 (2003) 87–110. Zbl1140.37315MR1971198
- [14] M. Field, I. Melbourne and A. Torok. Stability of mixing and rapid mixing for hyperbolic flows. Ann. of Math. (2) 166 (2007) 269–291. Zbl1140.37004MR2342697
- [15] L. Heinrich. Mixing properties and central limit theorem for a class of non-identical piecewise monotonic -transformations. Math. Nachr.181 (1996) 185–214. Zbl0863.60023MR1409076
- [16] I. A. Ibragimov and Y. V. Linnik. Independent and Stationary Sequences of Random Variables. Wolters–Noordhoff, Groningen, 1971. Zbl0219.60027MR322926
- [17] J. Jacod and A. N. Shiryaev. Limit Theorems for Stochastic Processes, 2nd edition. Springer, Berlin, 2003. Zbl0635.60021MR1943877
- [18] R. Z. Khasminskii. On stochastic processes defined by differential equations with a small parameter. Theory Probab. Appl.11 (1966) 211–228. Zbl0168.16002MR203788
- [19] R. Z. Khasminskii. A limit theorem for solutions of differential equations with random right-hand side. Theory Probab. Appl.11 (1966) 390–406. Zbl0202.48601
- [20] Yu. Kifer. Limit theorems in averaging for dynamical systems. Ergodic Theory Dynam. Systems15 (1995) 1143–1172. Zbl0841.34048MR1366312
- [21] Yu. Kifer. Averaging principle for fully coupled dynamical systems and large deviations. Ergodic Theory Dynam. Systems24 (2004) 847–871. Zbl1055.37025MR2062922
- [22] Y. Kifer. Nonconventional law of large numbers and fractal dimensions of some multiple recurrence sets. Stoch. Dyn. 12 (2012) 1150023. Zbl1255.60044MR2926580
- [23] Y. Kifer. A strong invariance principle for nonconventional sums. Probab. Theory Related Fields 155(1–2) (2013) 463–486. Zbl1271.60047MR3010405
- [24] A. Katok and B. Hasselblatt. Introduction to the Modern Theory of Dynamical Systems. Cambridge Univ. Press, Cambridge, 1995. Zbl0878.58019MR1326374
- [25] Yu. Kifer and S. R. S. Varadhan. Nonconventional limit theorems in discrete and continuous time via martingales. Ann. Probab. To appear. Zbl1304.60041MR3178470
- [26] C. Liverani. Central limit theorems for deterministic systems. In International Conference on Dynamical Systems (Montevideo, 1995) 56–75. Pitman Research Notes in Math. 363. Longman, Harlow, 1996. Zbl0871.58055MR1460797
- [27] D. L. McLeish. Invariance principles for dependent variables. Z. Wahrsch. Verw. Gebiete32 (1975) 165–178. Zbl0288.60034MR388483
- [28] D. L. McLeish. On the invariance principle for nonstationary mixingales. Ann. Probab.5 (1977) 616–621. Zbl0367.60021MR445583
- [29] J. A. Sanders, F. Verhurst and J. Murdock. Averaging Methods in Nonlinear Dynamical Systems, 2nd edition. Springer, New York, 2007. Zbl1128.34001MR2316999
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.