Universality for random tensors
Annales de l'I.H.P. Probabilités et statistiques (2014)
- Volume: 50, Issue: 4, page 1474-1525
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topGurau, Razvan. "Universality for random tensors." Annales de l'I.H.P. Probabilités et statistiques 50.4 (2014): 1474-1525. <http://eudml.org/doc/272101>.
@article{Gurau2014,
abstract = {We prove two universality results for random tensors of arbitrary rank $D$. We first prove that a random tensor whose entries are $N^\{D\}$ independent, identically distributed, complex random variables converges in distribution in the large $N$ limit to the same limit as the distributional limit of a Gaussian tensor model. This generalizes the universality of random matrices to random tensors. We then prove a second, stronger, universality result. Under the weaker assumption that the joint probability distribution of tensor entries is invariant, assuming that the cumulants of this invariant distribution are uniformly bounded, we prove that in the large $N$ limit the tensor again converges in distribution to the distributional limit of a Gaussian tensor model. We emphasize that the covariance of the large $N$ Gaussian isnot universal, but depends strongly on the details of the joint distribution.},
author = {Gurau, Razvan},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random tensors; large $N$ limit; random tensors; large limit},
language = {eng},
number = {4},
pages = {1474-1525},
publisher = {Gauthier-Villars},
title = {Universality for random tensors},
url = {http://eudml.org/doc/272101},
volume = {50},
year = {2014},
}
TY - JOUR
AU - Gurau, Razvan
TI - Universality for random tensors
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2014
PB - Gauthier-Villars
VL - 50
IS - 4
SP - 1474
EP - 1525
AB - We prove two universality results for random tensors of arbitrary rank $D$. We first prove that a random tensor whose entries are $N^{D}$ independent, identically distributed, complex random variables converges in distribution in the large $N$ limit to the same limit as the distributional limit of a Gaussian tensor model. This generalizes the universality of random matrices to random tensors. We then prove a second, stronger, universality result. Under the weaker assumption that the joint probability distribution of tensor entries is invariant, assuming that the cumulants of this invariant distribution are uniformly bounded, we prove that in the large $N$ limit the tensor again converges in distribution to the distributional limit of a Gaussian tensor model. We emphasize that the covariance of the large $N$ Gaussian isnot universal, but depends strongly on the details of the joint distribution.
LA - eng
KW - random tensors; large $N$ limit; random tensors; large limit
UR - http://eudml.org/doc/272101
ER -
References
top- [1] A. Abdesselam and V. Rivasseau. Trees, forests and jungles: A botanical garden for cluster expansions. In Constructive Physics. V. Rivasseau (Ed). Lecture Notes in Physics 446. Springer, Berlin, 1995. Zbl0822.60095MR1356024
- [2] J. Ambjorn, B. Durhuus and T. Jonsson. Three-dimensional simplicial quantum gravity and generalized matrix models. Mod. Phys. Lett. A6 (1991) 1133–1146. Zbl1020.83537MR1115607
- [3] G. W. Anderson, A. Guionnet and O. Zeitouni. An Introduction to Random Matrices. Studies in Advanced Mathematics 118. Cambridge Univ. Press, Cambridge, 2009. Zbl1184.15023MR2760897
- [4] J. Ben Geloun and V. Rivasseau. A renormalizable 4-dimensional tensor field theory. Comm. Math. Phys. 318 69–109. Available at arXiv:1111.4997 [hep-th]. Zbl1261.83016MR3017064
- [5] V. Bonzom, R. Gurau, A. Riello and V. Rivasseau. Critical behavior of colored tensor models in the large limit. Nucl. Phys. B 853 (2011) 174–195. Available at arXiv:1105.3122 [hep-th]. Zbl1229.81222MR2831765
- [6] V. Bonzom, R. Gurau and V. Rivasseau. Random tensor models in the large limit: Uncoloring the colored tensor models. Phys. Rev. D 85 (2012) 084037. Available at arXiv:1202.3637 [hep-th]. Zbl1229.81222MR2913765
- [7] B. Collins. Moments and cumulants of polynomial random variables on unitary groups, the Itzykson–Zuber integral, and free probability. Int. Math. Res. Not. 17 (2003) 953–982. Available at arXiv:math-ph/0205010. Zbl1049.60091MR1959915
- [8] B. Collins and P. Sniady. Integration with respect to the Haar measure on unitary, orthogonal and symplectic group. Comm. Math. Phys. 264 (2006) 773–795. Available at arXiv:math-ph/0402073. Zbl1108.60004MR2217291
- [9] A. Connes and D. Kreimer. Hopf algebras, renormalization and noncommutative geometry. Comm. Math. Phys. 199 (1998) 203–242. Available at arXiv:hep-th/9808042. Zbl0932.16038MR1660199
- [10] A. Connes and D. Kreimer. Insertion and elimination: The doubly infinite Lie algebra of Feynman graphs. Ann. Henri Poincaré 3 (2002) 411–433. Available at arXiv:hep-th/0201157. Zbl1033.81061MR1915297
- [11] F. J. Dyson. Statistical theory of the energy levels of complex systems. I. J. Math. Phys.3 (1962) 140–156. Zbl0105.41604MR143556
- [12] F. J. Dyson. Correlations between eigenvalues of a random matrix. Comm. Math. Phys.19 (1970) 235–250. Zbl0221.62019MR278668
- [13] L. Erdos. Universality of Wigner random matrices: A survey of recent results. Uspekhi Mat. Nauk 66 (2011) 67–198. Available at arXiv:1004.0861v2 [math-ph]. Zbl1230.82032MR2859190
- [14] G. Gallavotti and F. Nicolo. Renormalization theory in four-dimensional scalar fields. I. Comm. Math. Phys.100 (1985) 545–590. MR806252
- [15] J. Glimm and A. Jaffe. Quantum Physics. A Functional Integral Point of View, 2nd edition. Springer, New York, 1987. Zbl0461.46051MR887102
- [16] M. Gross. Tensor models and simplicial quantum gravity in 2-D. Nucl. Phys. Proc. Suppl. 25A (1992) 144–149. Zbl0957.83511MR1182621
- [17] H. Grosse and R. Wulkenhaar. Renormalization of theory on noncommutative in the matrix base. Comm. Math. Phys. 256 (2005) 305–374. Available at arXiv:hep-th/0401128. Zbl1075.82005MR2160797
- [18] R. Gurau. Lost in translation: Topological singularities in group field theory. Class. Quant. Grav. 27 (2010) 235023. Available at arXiv:1006.0714 [hep-th]. Zbl1205.83022MR2738259
- [19] R. Gurau. The expansion of colored tensor models. Ann. Henri Poincaré 12 (2011) 829–847. Available at arXiv:1011.2726 [gr-qc]. Zbl1218.81088MR2802384
- [20] R. Gurau. The complete expansion of colored tensor models in arbitrary dimension. Ann. Henri Poincaré 13 (2011) 399–423. Available at arXiv:1102.5759 [gr-qc]. Zbl1245.81118MR2909101
- [21] R. Gurau. Colored group field theory. Comm. Math. Phys. 304 (2011) 69–93. Available at arXiv:0907.2582 [hep-th]. Zbl1214.81170MR2793930
- [22] R. Gurau. A generalization of the Virasoro algebra to arbitrary dimensions. Nucl. Phys. B 852 (2011) 592–614. Available at arXiv:1105.6072 [hep-th]. Zbl1229.81129MR2826235
- [23] R. Gurau and V. Rivasseau. The expansion of colored tensor models in arbitrary dimension. Europhys. Lett. 95 (2011) 50004. Available at arXiv:1101.4182 [gr-qc]. Zbl1218.81088MR2802384
- [24] R. Gurau and J. P. Ryan. Colored tensor models – A review. SIGMA 8 (2012) 020. Available at arXiv:1109.4812 [hep-th]. Zbl1242.05094MR2942819
- [25] S. K. Lando, A. K. Zvonkin, R. V. Gamkrelidze and V. A. Vassiliev. Graphs on Surfaces and Their Applications. Encyclopaedia of Mathematical Sciences 141. Springer, Berlin, 2004. Zbl1040.05001MR2036721
- [26] J. Martinet and J.-P. Ramis. Elementary acceleration and multisummability I. Ann. Inst. H. Poincaré Phys. Théor.54 (1991) 331–401. Zbl0748.12005MR1128863
- [27] M. L. Mehta. Random Matrices. Pure and Applied Mathematics (Amsterdam) 142. Elsevier/Academic Press, Amsterdam, 2004. Zbl1107.15019MR2129906
- [28] A. Nica and R. Speicher. Lectures on the Combinatorics of Free Probability. London Mathematical Society Lecture Note Series 335. Cambridge Univ. Press, Cambridge, 2006. Zbl1133.60003MR2266879
- [29] L. Pastur and M. Shcherbina. Eigenvalue Distribution of Large Random Matrices. Mathematical Surveys and Monographs 171. Amer. Math. Soc., Providence, RI, 2011. Zbl1244.15002MR2808038
- [30] V. Rivasseau. From Perturbative to Constructive Renormalization, 2nd edition. Princeton Univ. Press, Princeton, 1991. MR1174294
- [31] V. Rivasseau. Constructive matrix theory. JHEP 0709 (2007) 008. Available at arXiv:0706.1224 [hep-th]. MR2342423
- [32] V. Rivasseau and Z. Wang. Loop vertex expansion for theory in zero dimension. J. Math. Phys. 51 (2010) 092304. Available at arXiv:1003.1037 [math-ph]. Zbl1309.81128MR2742808
- [33] A. D. Sokal. An improvement of Watson’s theorem on Borel summability. J. Math. Phys.21 (1980) 261–263. Zbl0441.40012MR558468
- [34] R. Speicher. Multiplicative functions on the lattice of non-crossing partitions and free convolution. Math. Ann.298 (1994) 611–628. Zbl0791.06010MR1268597
- [35] G. ’t Hooft. A planar diagram theory for strong interactions. Nucl. Phys. B 72 (1974) 461–473.
- [36] T. Tao and V. Vu. Random matrices: Universality of local eigenvalue statistics. Acta Math. 206 (1) (2011) 127–204. Available at arXiv:0906.0510v10. Zbl1217.15043MR2784665
- [37] D. Voiculescu. Symmetries of some reduced free product -algebras. In Operator Algebras and Their Connections with Topology and Ergodic Theory (Buşteni, 1983) 556–588. Lecture Notes in Mathematics 1132. Springer, New York, 1983. Zbl0618.46048MR799593
- [38] D. Voiculescu. Limit laws for random matrices and free products. Invent. Math.104 (1991) 201–220. Zbl0736.60007MR1094052
- [39] D. Voiculescu, K. Dykema and A. Nica. Free Random Variables. CRM Monograph Series 1. Amer. Math. Soc., Providence, RI, 1992. Zbl0795.46049MR1217253
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.