Universality for random tensors
Annales de l'I.H.P. Probabilités et statistiques (2014)
- Volume: 50, Issue: 4, page 1474-1525
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] A. Abdesselam and V. Rivasseau. Trees, forests and jungles: A botanical garden for cluster expansions. In Constructive Physics. V. Rivasseau (Ed). Lecture Notes in Physics 446. Springer, Berlin, 1995. Zbl0822.60095MR1356024
- [2] J. Ambjorn, B. Durhuus and T. Jonsson. Three-dimensional simplicial quantum gravity and generalized matrix models. Mod. Phys. Lett. A6 (1991) 1133–1146. Zbl1020.83537MR1115607
- [3] G. W. Anderson, A. Guionnet and O. Zeitouni. An Introduction to Random Matrices. Studies in Advanced Mathematics 118. Cambridge Univ. Press, Cambridge, 2009. Zbl1184.15023MR2760897
- [4] J. Ben Geloun and V. Rivasseau. A renormalizable 4-dimensional tensor field theory. Comm. Math. Phys. 318 69–109. Available at arXiv:1111.4997 [hep-th]. Zbl1261.83016MR3017064
- [5] V. Bonzom, R. Gurau, A. Riello and V. Rivasseau. Critical behavior of colored tensor models in the large limit. Nucl. Phys. B 853 (2011) 174–195. Available at arXiv:1105.3122 [hep-th]. Zbl1229.81222MR2831765
- [6] V. Bonzom, R. Gurau and V. Rivasseau. Random tensor models in the large limit: Uncoloring the colored tensor models. Phys. Rev. D 85 (2012) 084037. Available at arXiv:1202.3637 [hep-th]. Zbl1229.81222MR2913765
- [7] B. Collins. Moments and cumulants of polynomial random variables on unitary groups, the Itzykson–Zuber integral, and free probability. Int. Math. Res. Not. 17 (2003) 953–982. Available at arXiv:math-ph/0205010. Zbl1049.60091MR1959915
- [8] B. Collins and P. Sniady. Integration with respect to the Haar measure on unitary, orthogonal and symplectic group. Comm. Math. Phys. 264 (2006) 773–795. Available at arXiv:math-ph/0402073. Zbl1108.60004MR2217291
- [9] A. Connes and D. Kreimer. Hopf algebras, renormalization and noncommutative geometry. Comm. Math. Phys. 199 (1998) 203–242. Available at arXiv:hep-th/9808042. Zbl0932.16038MR1660199
- [10] A. Connes and D. Kreimer. Insertion and elimination: The doubly infinite Lie algebra of Feynman graphs. Ann. Henri Poincaré 3 (2002) 411–433. Available at arXiv:hep-th/0201157. Zbl1033.81061MR1915297
- [11] F. J. Dyson. Statistical theory of the energy levels of complex systems. I. J. Math. Phys.3 (1962) 140–156. Zbl0105.41604MR143556
- [12] F. J. Dyson. Correlations between eigenvalues of a random matrix. Comm. Math. Phys.19 (1970) 235–250. Zbl0221.62019MR278668
- [13] L. Erdos. Universality of Wigner random matrices: A survey of recent results. Uspekhi Mat. Nauk 66 (2011) 67–198. Available at arXiv:1004.0861v2 [math-ph]. Zbl1230.82032MR2859190
- [14] G. Gallavotti and F. Nicolo. Renormalization theory in four-dimensional scalar fields. I. Comm. Math. Phys.100 (1985) 545–590. MR806252
- [15] J. Glimm and A. Jaffe. Quantum Physics. A Functional Integral Point of View, 2nd edition. Springer, New York, 1987. Zbl0461.46051MR887102
- [16] M. Gross. Tensor models and simplicial quantum gravity in 2-D. Nucl. Phys. Proc. Suppl. 25A (1992) 144–149. Zbl0957.83511MR1182621
- [17] H. Grosse and R. Wulkenhaar. Renormalization of theory on noncommutative in the matrix base. Comm. Math. Phys. 256 (2005) 305–374. Available at arXiv:hep-th/0401128. Zbl1075.82005MR2160797
- [18] R. Gurau. Lost in translation: Topological singularities in group field theory. Class. Quant. Grav. 27 (2010) 235023. Available at arXiv:1006.0714 [hep-th]. Zbl1205.83022MR2738259
- [19] R. Gurau. The expansion of colored tensor models. Ann. Henri Poincaré 12 (2011) 829–847. Available at arXiv:1011.2726 [gr-qc]. Zbl1218.81088MR2802384
- [20] R. Gurau. The complete expansion of colored tensor models in arbitrary dimension. Ann. Henri Poincaré 13 (2011) 399–423. Available at arXiv:1102.5759 [gr-qc]. Zbl1245.81118MR2909101
- [21] R. Gurau. Colored group field theory. Comm. Math. Phys. 304 (2011) 69–93. Available at arXiv:0907.2582 [hep-th]. Zbl1214.81170MR2793930
- [22] R. Gurau. A generalization of the Virasoro algebra to arbitrary dimensions. Nucl. Phys. B 852 (2011) 592–614. Available at arXiv:1105.6072 [hep-th]. Zbl1229.81129MR2826235
- [23] R. Gurau and V. Rivasseau. The expansion of colored tensor models in arbitrary dimension. Europhys. Lett. 95 (2011) 50004. Available at arXiv:1101.4182 [gr-qc]. Zbl1218.81088MR2802384
- [24] R. Gurau and J. P. Ryan. Colored tensor models – A review. SIGMA 8 (2012) 020. Available at arXiv:1109.4812 [hep-th]. Zbl1242.05094MR2942819
- [25] S. K. Lando, A. K. Zvonkin, R. V. Gamkrelidze and V. A. Vassiliev. Graphs on Surfaces and Their Applications. Encyclopaedia of Mathematical Sciences 141. Springer, Berlin, 2004. Zbl1040.05001MR2036721
- [26] J. Martinet and J.-P. Ramis. Elementary acceleration and multisummability I. Ann. Inst. H. Poincaré Phys. Théor.54 (1991) 331–401. Zbl0748.12005MR1128863
- [27] M. L. Mehta. Random Matrices. Pure and Applied Mathematics (Amsterdam) 142. Elsevier/Academic Press, Amsterdam, 2004. Zbl1107.15019MR2129906
- [28] A. Nica and R. Speicher. Lectures on the Combinatorics of Free Probability. London Mathematical Society Lecture Note Series 335. Cambridge Univ. Press, Cambridge, 2006. Zbl1133.60003MR2266879
- [29] L. Pastur and M. Shcherbina. Eigenvalue Distribution of Large Random Matrices. Mathematical Surveys and Monographs 171. Amer. Math. Soc., Providence, RI, 2011. Zbl1244.15002MR2808038
- [30] V. Rivasseau. From Perturbative to Constructive Renormalization, 2nd edition. Princeton Univ. Press, Princeton, 1991. MR1174294
- [31] V. Rivasseau. Constructive matrix theory. JHEP 0709 (2007) 008. Available at arXiv:0706.1224 [hep-th]. MR2342423
- [32] V. Rivasseau and Z. Wang. Loop vertex expansion for theory in zero dimension. J. Math. Phys. 51 (2010) 092304. Available at arXiv:1003.1037 [math-ph]. Zbl1309.81128MR2742808
- [33] A. D. Sokal. An improvement of Watson’s theorem on Borel summability. J. Math. Phys.21 (1980) 261–263. Zbl0441.40012MR558468
- [34] R. Speicher. Multiplicative functions on the lattice of non-crossing partitions and free convolution. Math. Ann.298 (1994) 611–628. Zbl0791.06010MR1268597
- [35] G. ’t Hooft. A planar diagram theory for strong interactions. Nucl. Phys. B 72 (1974) 461–473.
- [36] T. Tao and V. Vu. Random matrices: Universality of local eigenvalue statistics. Acta Math. 206 (1) (2011) 127–204. Available at arXiv:0906.0510v10. Zbl1217.15043MR2784665
- [37] D. Voiculescu. Symmetries of some reduced free product -algebras. In Operator Algebras and Their Connections with Topology and Ergodic Theory (Buşteni, 1983) 556–588. Lecture Notes in Mathematics 1132. Springer, New York, 1983. Zbl0618.46048MR799593
- [38] D. Voiculescu. Limit laws for random matrices and free products. Invent. Math.104 (1991) 201–220. Zbl0736.60007MR1094052
- [39] D. Voiculescu, K. Dykema and A. Nica. Free Random Variables. CRM Monograph Series 1. Amer. Math. Soc., Providence, RI, 1992. Zbl0795.46049MR1217253