Derived invariance of the number of holomorphic -forms and vector fields
Mihnea Popa; Christian Schnell
Annales scientifiques de l'École Normale Supérieure (2011)
- Volume: 44, Issue: 3, page 527-536
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topPopa, Mihnea, and Schnell, Christian. "Derived invariance of the number of holomorphic $1$-forms and vector fields." Annales scientifiques de l'École Normale Supérieure 44.3 (2011): 527-536. <http://eudml.org/doc/272111>.
@article{Popa2011,
abstract = {We prove that smooth projective varieties with equivalent derived categories have isogenous Picard varieties. In particular their irregularity and number of independent vector fields are the same. This implies that all Hodge numbers are the same for arbitrary derived equivalent threefolds, as well as other consequences of derived equivalence based on numerical criteria.},
author = {Popa, Mihnea, Schnell, Christian},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {derived categories; Picard variety; Hodge numbers},
language = {eng},
number = {3},
pages = {527-536},
publisher = {Société mathématique de France},
title = {Derived invariance of the number of holomorphic $1$-forms and vector fields},
url = {http://eudml.org/doc/272111},
volume = {44},
year = {2011},
}
TY - JOUR
AU - Popa, Mihnea
AU - Schnell, Christian
TI - Derived invariance of the number of holomorphic $1$-forms and vector fields
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2011
PB - Société mathématique de France
VL - 44
IS - 3
SP - 527
EP - 536
AB - We prove that smooth projective varieties with equivalent derived categories have isogenous Picard varieties. In particular their irregularity and number of independent vector fields are the same. This implies that all Hodge numbers are the same for arbitrary derived equivalent threefolds, as well as other consequences of derived equivalence based on numerical criteria.
LA - eng
KW - derived categories; Picard variety; Hodge numbers
UR - http://eudml.org/doc/272111
ER -
References
top- [1] S. Barannikov & M. Kontsevich, Frobenius manifolds and formality of Lie algebras of polyvector fields, Int. Math. Res. Not.1998 (1998), 201–215. Zbl0914.58004MR1609624
- [2] V. V. Batyrev, Stringy Hodge numbers of varieties with Gorenstein canonical singularities, in Integrable systems and algebraic geometry (Kobe/Kyoto, 1997), World Sci. Publ., River Edge, NJ, 1998, 1–32. Zbl0963.14015MR1672108
- [3] T. Bridgeland & A. Maciocia, Complex surfaces with equivalent derived categories, Math. Z.236 (2001), 677–697. Zbl1081.14023
- [4] M. Brion, On the geometry of algebraic groups and homogeneous spaces, preprint arXiv:math/09095014. Zbl1220.14029
- [5] M. Brion, Some basic results on actions of non-affine algebraic groups, preprint arXiv:math/0702518. Zbl1217.14029
- [6] J. A. Chen & C. D. Hacon, Characterization of abelian varieties, Invent. Math.143 (2001), 435–447. Zbl0996.14020
- [7] A. Căldăraru, The Mukai pairing, I: The Hochschild structure, preprint arXiv:math/0308079. Zbl1098.14011
- [8] J. Denef & F. Loeser, Germs of arcs on singular algebraic varieties and motivic integration, Invent. Math.135 (1999), 201–232. Zbl0928.14004
- [9] D. Huybrechts, Fourier-Mukai transforms in algebraic geometry, Oxford Mathematical Monographs, Oxford Univ. Press, 2006. Zbl1095.14002
- [10] D. Huybrechts & M. Nieper-Wisskirchen, Remarks on derived equivalences of Ricci-flat manifolds, preprint arXiv:0801.4747, to appear in Math. Z. Zbl1213.32012
- [11] Y. Kawamata, -equivalence and -equivalence, J. Differential Geom.61 (2002), 147–171. Zbl1056.14021
- [12] M. Kontsevich, Homological algebra of mirror symmetry, in Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), Birkhäuser, 1995, 120–139. Zbl0846.53021
- [13] H. Matsumura, On algebraic groups of birational transformations, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.34 (1963), 151–155. Zbl0134.16601
- [14] S. Mukai, Duality between and with its application to Picard sheaves, Nagoya Math. J.81 (1981), 153–175. Zbl0417.14036MR607081
- [15] D. O. Orlov, Derived categories of coherent sheaves and equivalences between them, Russian Math. Surveys58 (2003), 511–591. Zbl1118.14021MR1998775
- [16] T. Pham, in preparation.
- [17] R. Rouquier, Automorphismes, graduations et catégories triangulées, preprint http://people.maths.ox.ac.uk/~rouquier/papers/autograd.pdf, 2009. Zbl1244.16009
- [18] J-P. Serre, Espaces fibrés algébriques, in Séminaire C. Chevalley, 1958, Exposé 1, Documents mathématiques 1, Soc. Math. France, 2001. MR177011
- [19] J-P. Serre, Morphismes universels et variété d’Albanese, in Séminaire C. Chevalley, 1958/59, Exposé 10, Documents mathématiques 1, Soc. Math. France, 2001. Zbl0123.13903MR1795548
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.