-invariant of linear algebraic groups
Viktor Petrov; Nikita Semenov; Kirill Zainoulline
Annales scientifiques de l'École Normale Supérieure (2008)
- Volume: 41, Issue: 6, page 1023-1053
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topPetrov, Viktor, Semenov, Nikita, and Zainoulline, Kirill. "$J$-invariant of linear algebraic groups." Annales scientifiques de l'École Normale Supérieure 41.6 (2008): 1023-1053. <http://eudml.org/doc/272139>.
@article{Petrov2008,
abstract = {Let $G$ be a semisimple linear algebraic group of inner type over a field $F$, and let $X$ be a projective homogeneous $G$-variety such that $G$ splits over the function field of $X$. We introduce the $J$-invariant of $G$ which characterizes the motivic behavior of $X$, and generalizes the $J$-invariant defined by A. Vishik in the context of quadratic forms.
We use this $J$-invariant to provide motivic decompositions of all generically split projective homogeneous $G$-varieties, e.g. Severi-Brauer varieties, Pfister quadrics, maximal orthogonal Grassmannians, varieties of Borel subgroups of $G$. We also discuss relations with torsion indices, canonical dimensions and cohomological invariants of the group $G$.},
author = {Petrov, Viktor, Semenov, Nikita, Zainoulline, Kirill},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {motive; algebraic group; homogeneous variety},
language = {eng},
number = {6},
pages = {1023-1053},
publisher = {Société mathématique de France},
title = {$J$-invariant of linear algebraic groups},
url = {http://eudml.org/doc/272139},
volume = {41},
year = {2008},
}
TY - JOUR
AU - Petrov, Viktor
AU - Semenov, Nikita
AU - Zainoulline, Kirill
TI - $J$-invariant of linear algebraic groups
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2008
PB - Société mathématique de France
VL - 41
IS - 6
SP - 1023
EP - 1053
AB - Let $G$ be a semisimple linear algebraic group of inner type over a field $F$, and let $X$ be a projective homogeneous $G$-variety such that $G$ splits over the function field of $X$. We introduce the $J$-invariant of $G$ which characterizes the motivic behavior of $X$, and generalizes the $J$-invariant defined by A. Vishik in the context of quadratic forms.
We use this $J$-invariant to provide motivic decompositions of all generically split projective homogeneous $G$-varieties, e.g. Severi-Brauer varieties, Pfister quadrics, maximal orthogonal Grassmannians, varieties of Borel subgroups of $G$. We also discuss relations with torsion indices, canonical dimensions and cohomological invariants of the group $G$.
LA - eng
KW - motive; algebraic group; homogeneous variety
UR - http://eudml.org/doc/272139
ER -
References
top- [1] F. W. Anderson & K. R. Fuller, Rings and categories of modules, second éd., Graduate Texts in Math. 13, Springer, 1992. Zbl0765.16001MR1245487
- [2] J.-P. Bonnet, Un isomorphisme motivique entre deux variétés homogènes projectives sous l’action d’un groupe de type , Doc. Math.8 (2003), 247–277. Zbl1062.14012MR2029167
- [3] P. Brosnan, Steenrod operations in Chow theory, Trans. Amer. Math. Soc.355 (2003), 1869–1903. Zbl1045.55005MR1953530
- [4] P. Brosnan, On motivic decompositions arising from the method of Białynicki-Birula, Invent. Math.161 (2005), 91–111. Zbl1085.14045MR2178658
- [5] B. Calmès, V. Petrov, N. Semenov & K. Zainoulline, Chow motives of twisted flag varieties, Compos. Math.142 (2006), 1063–1080. Zbl1111.14008MR2249542
- [6] V. Chernousov, A remark on the -invariant of Serre for groups of type , Mat. Zametki 56 (1994), 116–121, 157. Zbl0835.20059MR1309826
- [7] V. Chernousov, S. Gille & A. Merkurjev, Motivic decomposition of isotropic projective homogeneous varieties, Duke Math. J.126 (2005), 137–159. Zbl1086.14041MR2110630
- [8] V. Chernousov & A. Merkurjev, Motivic decomposition of projective homogeneous varieties and the Krull-Schmidt theorem, Transform. Groups11 (2006), 371–386. Zbl1111.14009MR2264459
- [9] M. Demazure, Invariants symétriques entiers des groupes de Weyl et torsion, Invent. Math.21 (1973), 287–301. Zbl0269.22010MR342522
- [10] M. Demazure, Désingularisation des variétés de Schubert généralisées, Ann. Sci. École Norm. Sup.7 (1974), 53–88. Zbl0312.14009MR354697
- [11] H. Duan & X. Zhao, A unified formula for Steenrod operations in flag manifolds, Compos. Math.143 (2007), 257–270. Zbl1117.55016MR2295204
- [12] D. Edidin & W. Graham, Characteristic classes in the Chow ring, J. Algebraic Geom.6 (1997), 431–443. Zbl0922.14003MR1487222
- [13] R. Elman, N. Karpenko & A. Merkurjev, The algebraic and geometric theory of quadratic forms, to appear in AMS Colloquium Publications. Zbl1165.11042MR2427530
- [14] R. S. Garibaldi, The Rost invariant has trivial kernel for quasi-split groups of low rank, Comment. Math. Helv.76 (2001), 684–711. Zbl1001.20042MR1881703
- [15] R. S. Garibaldi & H. P. Petersson, Groups of outer type with trivial Tits algebras, Transform. Groups12 (2007), 443–474. Zbl1139.17004MR2356318
- [16] P. Gille, Invariants cohomologiques de Rost en caractéristique positive, -Theory 21 (2000), 57–100. Zbl0993.20031MR1802626
- [17] A. Grothendieck, La torsion homologique et les sections rationnelles, in Anneaux de Chow et applications, Séminaire C. Chevalley, 2e année, 1958.
- [18] A. J. Hahn & O. T. O’Meara, The classical groups and -theory, Grund. Math. Wiss. 291, Springer, 1989. Zbl0683.20033MR1007302
- [19] H. Hiller, Geometry of Coxeter groups, Research Notes in Math. 54, Pitman (Advanced Publishing Program), 1982. Zbl0483.57002MR649068
- [20] V. G. Kac, Torsion in cohomology of compact Lie groups and Chow rings of reductive algebraic groups, Invent. Math.80 (1985), 69–79. Zbl0566.57028MR784529
- [21] N. Karpenko, Grothendieck Chow motives of Severi-Brauer varieties, St. Petersburg Math. J.7 (1996), 649–661. Zbl0866.14006MR1356536
- [22] N. Karpenko & A. Merkurjev, Canonical -dimension of algebraic groups, Adv. Math.205 (2006), 410–433. Zbl1119.14041MR2258262
- [23] I. Kersten & U. Rehmann, Generic splitting of reductive groups, Tohoku Math. J.46 (1994), 35–70. Zbl0805.20034MR1256727
- [24] M.-A. Knus, A. Merkurjev, M. Rost & J.-P. Tignol, The book of involutions, AMS Colloquium Publ. 44 (1998). Zbl0955.16001MR1632779
- [25] B. Köck, Chow motif and higher Chow theory of , Manuscripta Math.70 (1991), 363–372. Zbl0735.14001MR1092142
- [26] Y. Manin, Correspondences, motives and monoidal transformations, Math. USSR Sbornik6 (1968), 439–470. Zbl0199.24803
- [27] A. Merkurjev, Rost invariants of simply connected algebraic groups, in Cohomological invariants in Galois cohomology, Univ. Lecture Ser. 28, Amer. Math. Soc., 2003, 101–158. MR1999385
- [28] A. Merkurjev, I. A. Panin & A. R. Wadsworth, Index reduction formulas for twisted flag varieties. I, -Theory 10 (1996), 517–596. Zbl0874.16012MR1415325
- [29] M. Mimura & H. Toda, Topology of Lie groups. I, II, Translations of Mathematical Monographs 91, Amer. Math. Soc., 1991. Zbl0757.57001MR1122592
- [30] S. Nikolenko, N. Semenov & K. Zainoulline, Motivic decomposition of anisotropic varieties of type into generalized Rost motives, to appear in J. of -Theory. Zbl1163.14014MR2476041
- [31] I. A. Panin, On the algebraic -theory of twisted flag varieties, -Theory 8 (1994), 541–585. Zbl0854.19002MR1326751
- [32] M. Rost, The motive of a Pfister form, preprint http://www.mathematik.uni-bielefeld.de/~rost/data/motive.pdf, 1998.
- [33] M. Rost, On the basic correspondence of a splitting variety, preprint http://www.mathematik.uni-bielefeld.de/~rost/data/bkc-c.pdf, 2006.
- [34] J. Tits, Classification of algebraic semisimple groups, in Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), Amer. Math. Soc., 1966, 33–62. Zbl0238.20052MR224710
- [35] A. Vishik, On the Chow groups of quadratic Grassmannians, Doc. Math.10 (2005), 111–130. Zbl1115.14002MR2148072
- [36] A. Vishik, Fields of -invariant , in Algebra, Arithmetic and Geometry, Manin Festschrift, Birkhäuser, 2007. Zbl1236.11037
- [37] V. Voevodsky, On motivic cohomology with -coefficients, preprint http://www.math.uiuc.edu/K-theory/0639/post_mot.pdf, 2003. Zbl1057.14028
- [38] K. Zainoulline, Canonical -dimensions of algebraic groups and degrees of basic polynomial invariants, Bull. Lond. Math. Soc.39 (2007), 301–304. Zbl1122.14008MR2323462
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.