J -invariant of linear algebraic groups

Viktor Petrov; Nikita Semenov; Kirill Zainoulline

Annales scientifiques de l'École Normale Supérieure (2008)

  • Volume: 41, Issue: 6, page 1023-1053
  • ISSN: 0012-9593

Abstract

top
Let G be a semisimple linear algebraic group of inner type over a field F , and let X be a projective homogeneous G -variety such that G splits over the function field of X . We introduce the J -invariant of G which characterizes the motivic behavior of X , and generalizes the J -invariant defined by A. Vishik in the context of quadratic forms. We use this J -invariant to provide motivic decompositions of all generically split projective homogeneous G -varieties, e.g. Severi-Brauer varieties, Pfister quadrics, maximal orthogonal Grassmannians, varieties of Borel subgroups of G . We also discuss relations with torsion indices, canonical dimensions and cohomological invariants of the group G .

How to cite

top

Petrov, Viktor, Semenov, Nikita, and Zainoulline, Kirill. "$J$-invariant of linear algebraic groups." Annales scientifiques de l'École Normale Supérieure 41.6 (2008): 1023-1053. <http://eudml.org/doc/272139>.

@article{Petrov2008,
abstract = {Let $G$ be a semisimple linear algebraic group of inner type over a field $F$, and let $X$ be a projective homogeneous $G$-variety such that $G$ splits over the function field of $X$. We introduce the $J$-invariant of $G$ which characterizes the motivic behavior of $X$, and generalizes the $J$-invariant defined by A. Vishik in the context of quadratic forms. We use this $J$-invariant to provide motivic decompositions of all generically split projective homogeneous $G$-varieties, e.g. Severi-Brauer varieties, Pfister quadrics, maximal orthogonal Grassmannians, varieties of Borel subgroups of $G$. We also discuss relations with torsion indices, canonical dimensions and cohomological invariants of the group $G$.},
author = {Petrov, Viktor, Semenov, Nikita, Zainoulline, Kirill},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {motive; algebraic group; homogeneous variety},
language = {eng},
number = {6},
pages = {1023-1053},
publisher = {Société mathématique de France},
title = {$J$-invariant of linear algebraic groups},
url = {http://eudml.org/doc/272139},
volume = {41},
year = {2008},
}

TY - JOUR
AU - Petrov, Viktor
AU - Semenov, Nikita
AU - Zainoulline, Kirill
TI - $J$-invariant of linear algebraic groups
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2008
PB - Société mathématique de France
VL - 41
IS - 6
SP - 1023
EP - 1053
AB - Let $G$ be a semisimple linear algebraic group of inner type over a field $F$, and let $X$ be a projective homogeneous $G$-variety such that $G$ splits over the function field of $X$. We introduce the $J$-invariant of $G$ which characterizes the motivic behavior of $X$, and generalizes the $J$-invariant defined by A. Vishik in the context of quadratic forms. We use this $J$-invariant to provide motivic decompositions of all generically split projective homogeneous $G$-varieties, e.g. Severi-Brauer varieties, Pfister quadrics, maximal orthogonal Grassmannians, varieties of Borel subgroups of $G$. We also discuss relations with torsion indices, canonical dimensions and cohomological invariants of the group $G$.
LA - eng
KW - motive; algebraic group; homogeneous variety
UR - http://eudml.org/doc/272139
ER -

References

top
  1. [1] F. W. Anderson & K. R. Fuller, Rings and categories of modules, second éd., Graduate Texts in Math. 13, Springer, 1992. Zbl0765.16001MR1245487
  2. [2] J.-P. Bonnet, Un isomorphisme motivique entre deux variétés homogènes projectives sous l’action d’un groupe de type G 2 , Doc. Math.8 (2003), 247–277. Zbl1062.14012MR2029167
  3. [3] P. Brosnan, Steenrod operations in Chow theory, Trans. Amer. Math. Soc.355 (2003), 1869–1903. Zbl1045.55005MR1953530
  4. [4] P. Brosnan, On motivic decompositions arising from the method of Białynicki-Birula, Invent. Math.161 (2005), 91–111. Zbl1085.14045MR2178658
  5. [5] B. Calmès, V. Petrov, N. Semenov & K. Zainoulline, Chow motives of twisted flag varieties, Compos. Math.142 (2006), 1063–1080. Zbl1111.14008MR2249542
  6. [6] V. Chernousov, A remark on the ( mod 5 ) -invariant of Serre for groups of type E 8 , Mat. Zametki 56 (1994), 116–121, 157. Zbl0835.20059MR1309826
  7. [7] V. Chernousov, S. Gille & A. Merkurjev, Motivic decomposition of isotropic projective homogeneous varieties, Duke Math. J.126 (2005), 137–159. Zbl1086.14041MR2110630
  8. [8] V. Chernousov & A. Merkurjev, Motivic decomposition of projective homogeneous varieties and the Krull-Schmidt theorem, Transform. Groups11 (2006), 371–386. Zbl1111.14009MR2264459
  9. [9] M. Demazure, Invariants symétriques entiers des groupes de Weyl et torsion, Invent. Math.21 (1973), 287–301. Zbl0269.22010MR342522
  10. [10] M. Demazure, Désingularisation des variétés de Schubert généralisées, Ann. Sci. École Norm. Sup.7 (1974), 53–88. Zbl0312.14009MR354697
  11. [11] H. Duan & X. Zhao, A unified formula for Steenrod operations in flag manifolds, Compos. Math.143 (2007), 257–270. Zbl1117.55016MR2295204
  12. [12] D. Edidin & W. Graham, Characteristic classes in the Chow ring, J. Algebraic Geom.6 (1997), 431–443. Zbl0922.14003MR1487222
  13. [13] R. Elman, N. Karpenko & A. Merkurjev, The algebraic and geometric theory of quadratic forms, to appear in AMS Colloquium Publications. Zbl1165.11042MR2427530
  14. [14] R. S. Garibaldi, The Rost invariant has trivial kernel for quasi-split groups of low rank, Comment. Math. Helv.76 (2001), 684–711. Zbl1001.20042MR1881703
  15. [15] R. S. Garibaldi & H. P. Petersson, Groups of outer type E 6 with trivial Tits algebras, Transform. Groups12 (2007), 443–474. Zbl1139.17004MR2356318
  16. [16] P. Gille, Invariants cohomologiques de Rost en caractéristique positive, K -Theory 21 (2000), 57–100. Zbl0993.20031MR1802626
  17. [17] A. Grothendieck, La torsion homologique et les sections rationnelles, in Anneaux de Chow et applications, Séminaire C. Chevalley, 2e année, 1958. 
  18. [18] A. J. Hahn & O. T. O’Meara, The classical groups and K -theory, Grund. Math. Wiss. 291, Springer, 1989. Zbl0683.20033MR1007302
  19. [19] H. Hiller, Geometry of Coxeter groups, Research Notes in Math. 54, Pitman (Advanced Publishing Program), 1982. Zbl0483.57002MR649068
  20. [20] V. G. Kac, Torsion in cohomology of compact Lie groups and Chow rings of reductive algebraic groups, Invent. Math.80 (1985), 69–79. Zbl0566.57028MR784529
  21. [21] N. Karpenko, Grothendieck Chow motives of Severi-Brauer varieties, St. Petersburg Math. J.7 (1996), 649–661. Zbl0866.14006MR1356536
  22. [22] N. Karpenko & A. Merkurjev, Canonical p -dimension of algebraic groups, Adv. Math.205 (2006), 410–433. Zbl1119.14041MR2258262
  23. [23] I. Kersten & U. Rehmann, Generic splitting of reductive groups, Tohoku Math. J.46 (1994), 35–70. Zbl0805.20034MR1256727
  24. [24] M.-A. Knus, A. Merkurjev, M. Rost & J.-P. Tignol, The book of involutions, AMS Colloquium Publ. 44 (1998). Zbl0955.16001MR1632779
  25. [25] B. Köck, Chow motif and higher Chow theory of G / P , Manuscripta Math.70 (1991), 363–372. Zbl0735.14001MR1092142
  26. [26] Y. Manin, Correspondences, motives and monoidal transformations, Math. USSR Sbornik6 (1968), 439–470. Zbl0199.24803
  27. [27] A. Merkurjev, Rost invariants of simply connected algebraic groups, in Cohomological invariants in Galois cohomology, Univ. Lecture Ser. 28, Amer. Math. Soc., 2003, 101–158. MR1999385
  28. [28] A. Merkurjev, I. A. Panin & A. R. Wadsworth, Index reduction formulas for twisted flag varieties. I, K -Theory 10 (1996), 517–596. Zbl0874.16012MR1415325
  29. [29] M. Mimura & H. Toda, Topology of Lie groups. I, II, Translations of Mathematical Monographs 91, Amer. Math. Soc., 1991. Zbl0757.57001MR1122592
  30. [30] S. Nikolenko, N. Semenov & K. Zainoulline, Motivic decomposition of anisotropic varieties of type F 4 into generalized Rost motives, to appear in J. of K -Theory. Zbl1163.14014MR2476041
  31. [31] I. A. Panin, On the algebraic K -theory of twisted flag varieties, K -Theory 8 (1994), 541–585. Zbl0854.19002MR1326751
  32. [32] M. Rost, The motive of a Pfister form, preprint http://www.mathematik.uni-bielefeld.de/~rost/data/motive.pdf, 1998. 
  33. [33] M. Rost, On the basic correspondence of a splitting variety, preprint http://www.mathematik.uni-bielefeld.de/~rost/data/bkc-c.pdf, 2006. 
  34. [34] J. Tits, Classification of algebraic semisimple groups, in Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), Amer. Math. Soc., 1966, 33–62. Zbl0238.20052MR224710
  35. [35] A. Vishik, On the Chow groups of quadratic Grassmannians, Doc. Math.10 (2005), 111–130. Zbl1115.14002MR2148072
  36. [36] A. Vishik, Fields of u -invariant 2 r + 1 , in Algebra, Arithmetic and Geometry, Manin Festschrift, Birkhäuser, 2007. Zbl1236.11037
  37. [37] V. Voevodsky, On motivic cohomology with / l -coefficients, preprint http://www.math.uiuc.edu/K-theory/0639/post_mot.pdf, 2003. Zbl1057.14028
  38. [38] K. Zainoulline, Canonical p -dimensions of algebraic groups and degrees of basic polynomial invariants, Bull. Lond. Math. Soc.39 (2007), 301–304. Zbl1122.14008MR2323462

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.