KAM theory for the hamiltonian derivative wave equation

Massimiliano Berti; Luca Biasco; Michela Procesi

Annales scientifiques de l'École Normale Supérieure (2013)

  • Volume: 46, Issue: 2, page 301-373
  • ISSN: 0012-9593

Abstract

top
We prove an infinite dimensional KAM theorem which implies the existence of Cantor families of small-amplitude, reducible, elliptic, analytic, invariant tori of Hamiltonian derivative wave equations.

How to cite

top

Berti, Massimiliano, Biasco, Luca, and Procesi, Michela. "KAM theory for the hamiltonian derivative wave equation." Annales scientifiques de l'École Normale Supérieure 46.2 (2013): 301-373. <http://eudml.org/doc/272171>.

@article{Berti2013,
abstract = {We prove an infinite dimensional KAM theorem which implies the existence of Cantor families of small-amplitude, reducible, elliptic, analytic, invariant tori of Hamiltonian derivative wave equations.},
author = {Berti, Massimiliano, Biasco, Luca, Procesi, Michela},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {infinite dimensional KAM theorem; Cantor families; hamiltonian derivative wave equations},
language = {eng},
number = {2},
pages = {301-373},
publisher = {Société mathématique de France},
title = {KAM theory for the hamiltonian derivative wave equation},
url = {http://eudml.org/doc/272171},
volume = {46},
year = {2013},
}

TY - JOUR
AU - Berti, Massimiliano
AU - Biasco, Luca
AU - Procesi, Michela
TI - KAM theory for the hamiltonian derivative wave equation
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2013
PB - Société mathématique de France
VL - 46
IS - 2
SP - 301
EP - 373
AB - We prove an infinite dimensional KAM theorem which implies the existence of Cantor families of small-amplitude, reducible, elliptic, analytic, invariant tori of Hamiltonian derivative wave equations.
LA - eng
KW - infinite dimensional KAM theorem; Cantor families; hamiltonian derivative wave equations
UR - http://eudml.org/doc/272171
ER -

References

top
  1. [1] D. Bambusi & B. Grébert, Birkhoff normal form for partial differential equations with tame modulus, Duke Math. J.135 (2006), 507–567. Zbl1110.37057MR2272975
  2. [2] M. Berti & L. Biasco, Branching of Cantor manifolds of elliptic tori and applications to PDEs, Comm. Math. Phys.305 (2011), 741–796. Zbl1230.37092MR2819413
  3. [3] M. Berti & P. Bolle, Sobolev quasi-periodic solutions of multidimensional wave equations with a multiplicative potential, Nonlinearity25 (2012), 2579–2613. Zbl1262.35015MR2967117
  4. [4] M. Berti & P. Bolle, Quasi-periodic solutions with Sobolev regularity of NLS on T d with a multiplicative potential, Eur. Jour. Math.15 (2013), 229–286. Zbl1260.35196MR2998835
  5. [5] J. Bourgain, Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE, Int. Math. Res. Not. 1994 (1994). Zbl0817.35102MR1316975
  6. [6] J. Bourgain, Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations, Ann. of Math.148 (1998), 363–439. Zbl0928.35161MR1668547
  7. [7] J. Bourgain, Periodic solutions of nonlinear wave equations, in Harmonic analysis and partial differential equations (Chicago, IL, 1996), Chicago Lectures in Math., Univ. Chicago Press, 1999, 69–97. MR1743856
  8. [8] J. Bourgain, Green’s function estimates for lattice Schrödinger operators and applications, Annals of Math. Studies 158, Princeton Univ. Press, 2005. MR2100420
  9. [9] L. Chierchia & J. You, KAM tori for 1D nonlinear wave equations with periodic boundary conditions, Comm. Math. Phys.211 (2000), 497–525. Zbl0956.37054MR1754527
  10. [10] W. Craig, Problèmes de petits diviseurs dans les équations aux dérivées partielles, Panoramas et Synthèses 9, Soc. Math. France, 2000. MR1804420
  11. [11] W. Craig & C. E. Wayne, Newton’s method and periodic solutions of nonlinear wave equations, Comm. Pure Appl. Math.46 (1993), 1409–1498. Zbl0794.35104MR1239318
  12. [12] J.-M. Delort, A quasi-linear Birkhoff normal forms method. Application to the quasi-linear Klein-Gordon equation on 𝕊 1 , Astérisque 341 (2012). MR2952065
  13. [13] J.-M. Delort & J. Szeftel, Long-time existence for small data nonlinear Klein-Gordon equations on tori and spheres, Int. Math. Res. Not.2004 (2004), 1897–1966. Zbl1079.35070MR2056326
  14. [14] L. H. Eliasson & S. B. Kuksin, KAM for the nonlinear Schrödinger equation, Ann. of Math.172 (2010), 371–435. Zbl1201.35177MR2680422
  15. [15] J. Geng, X. Xu & J. You, An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrödinger equation, Adv. Math.226 (2011), 5361–5402. Zbl1213.37104MR2775905
  16. [16] J. Geng & J. You, A KAM theorem for Hamiltonian partial differential equations in higher dimensional spaces, Comm. Math. Phys.262 (2006), 343–372. Zbl1103.37047MR2200264
  17. [17] P. Gérard & S. Grellier, Effective integrable dynamics for some nonlinear wave equation, preprint http://hal.archives-ouvertes.fr/hal-00635686/fr/. Zbl1268.35013
  18. [18] B. Grébert & L. Thomann, KAM for the quantum harmonic oscillator, Comm. Math. Phys.307 (2011), 383–427. Zbl1250.81033MR2837120
  19. [19] T. Kappeler & J. Pöschel, KAM and KdV, Springer, 2003. 
  20. [20] S. B. Kuksin, Hamiltonian perturbations of infinite-dimensional linear systems with imaginary spectrum, Funktsional. Anal. i Prilozhen. 21 (1987), 22–37, 95. Zbl0631.34069MR911772
  21. [21] S. B. Kuksin, A KAM-theorem for equations of the Korteweg-de Vries type, Rev. Math. Math. Phys.10 (1998), 1–64. Zbl0920.35135MR1754991
  22. [22] S. B. Kuksin, Analysis of Hamiltonian PDEs, Oxford Lecture Series in Mathematics and its Applications 19, Oxford Univ. Press, 2000. Zbl0960.35001MR1857574
  23. [23] S. Kuksin & J. Pöschel, Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation, Ann. of Math.143 (1996), 149–179. Zbl0847.35130MR1370761
  24. [24] J. Liu & X. Yuan, A KAM theorem for Hamiltonian partial differential equations with unbounded perturbations, Comm. Math. Phys.307 (2011), 629–673. Zbl1247.37082MR2842962
  25. [25] N. V. Nikolenko, The method of Poincaré normal forms in problems of integrability of equations of evolution type, Uspekhi Mat. Nauk 41 (1986), 109–152, 263. Zbl0632.35026MR878327
  26. [26] J. Pöschel, On elliptic lower-dimensional tori in Hamiltonian systems, Math. Z.202 (1989), 559–608. Zbl0662.58037MR1022821
  27. [27] J. Pöschel, A KAM-theorem for some nonlinear partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci.23 (1996), 119–148. Zbl0870.34060MR1401420
  28. [28] J. Pöschel, Quasi-periodic solutions for a nonlinear wave equation, Comment. Math. Helv.71 (1996), 269–296. Zbl0866.35013MR1396676
  29. [29] J. Pöschel & E. Trubowitz, Inverse spectral theory, Pure and Applied Mathematics 130, Academic Press Inc., 1987. Zbl0623.34001MR894477
  30. [30] M. Procesi & X. Xu, Quasi-Töplitz functions in KAM theorem, to appear in SIAM Journal Math. Anal. Zbl1304.37056
  31. [31] W. M. Wang, Supercritical nonlinear Schrödinger equations I: quasi-periodic solutions, preprint arXiv:1007.0156. 
  32. [32] C. E. Wayne, Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory, Comm. Math. Phys.127 (1990), 479–528. Zbl0708.35087MR1040892

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.