A Chen model for mapping spaces and the surface product
Grégory Ginot; Thomas Tradler; Mahmoud Zeinalian
Annales scientifiques de l'École Normale Supérieure (2010)
- Volume: 43, Issue: 5, page 811-881
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topGinot, Grégory, Tradler, Thomas, and Zeinalian, Mahmoud. "A Chen model for mapping spaces and the surface product." Annales scientifiques de l'École Normale Supérieure 43.5 (2010): 811-881. <http://eudml.org/doc/272175>.
@article{Ginot2010,
abstract = {We develop a machinery of Chen iterated integrals for higher Hochschild complexes. These are complexes whose differentials are modeled on an arbitrary simplicial set much in the same way the ordinary Hochschild differential is modeled on the circle. We use these to give algebraic models for general mapping spaces and define and study the surface product operation on the homology of mapping spaces of surfaces of all genera into a manifold. This is an analogue of the loop product in string topology. As an application, we show this product is homotopy invariant. We prove Hochschild-Kostant-Rosenberg type theorems and use them to give explicit formulae for the surface product of odd spheres and Lie groups.},
author = {Ginot, Grégory, Tradler, Thomas, Zeinalian, Mahmoud},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {string topology; (higher) Hochschild homology; Hochschild cohomology; Chen integrals; mapping spaces; surface product},
language = {eng},
number = {5},
pages = {811-881},
publisher = {Société mathématique de France},
title = {A Chen model for mapping spaces and the surface product},
url = {http://eudml.org/doc/272175},
volume = {43},
year = {2010},
}
TY - JOUR
AU - Ginot, Grégory
AU - Tradler, Thomas
AU - Zeinalian, Mahmoud
TI - A Chen model for mapping spaces and the surface product
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2010
PB - Société mathématique de France
VL - 43
IS - 5
SP - 811
EP - 881
AB - We develop a machinery of Chen iterated integrals for higher Hochschild complexes. These are complexes whose differentials are modeled on an arbitrary simplicial set much in the same way the ordinary Hochschild differential is modeled on the circle. We use these to give algebraic models for general mapping spaces and define and study the surface product operation on the homology of mapping spaces of surfaces of all genera into a manifold. This is an analogue of the loop product in string topology. As an application, we show this product is homotopy invariant. We prove Hochschild-Kostant-Rosenberg type theorems and use them to give explicit formulae for the surface product of odd spheres and Lie groups.
LA - eng
KW - string topology; (higher) Hochschild homology; Hochschild cohomology; Chen integrals; mapping spaces; surface product
UR - http://eudml.org/doc/272175
ER -
References
top- [1] K. Behrend, G. Ginot, B. Noohi & P. Xu, String topology for stacks, preprint arXiv:math/0712.3857. Zbl1253.55007MR2977576
- [2] M. Bökstedt, W. C. Hsiang & I. Madsen, The cyclotomic trace and algebraic -theory of spaces, Invent. Math.111 (1993), 465–539. Zbl0804.55004MR1202133
- [3] E. H. J. Brown & R. H. Szczarba, On the rational homotopy type of function spaces, Trans. Amer. Math. Soc.349 (1997), 4931–4951. Zbl0927.55012MR1407482
- [4] D. Burghelea & M. Vigué-Poirrier, Cyclic homology of commutative algebras. I, in Algebraic topology—rational homotopy (Louvain-la-Neuve, 1986), Lecture Notes in Math. 1318, Springer, 1988, 51–72. Zbl0666.13007MR952571
- [5] M. Chas & D. Sullivan, String topology, preprint arXiv:9911159.
- [6] K. T. Chen, Iterated integrals of differential forms and loop space homology, Ann. of Math.97 (1973), 217–246. Zbl0227.58003
- [7] K. T. Chen, Iterated path integrals, Bull. Amer. Math. Soc.83 (1977), 831–879. Zbl0389.58001
- [8] R. L. Cohen & J. D. S. Jones, A homotopy theoretic realization of string topology, Math. Ann.324 (2002), 773–798. Zbl1025.55005
- [9] R. L. Cohen & A. A. Voronov, Notes on string topology, in String topology and cyclic homology, Adv. Courses Math. CRM Barcelona, Birkhäuser, 2006, 1–95. Zbl1089.57002
- [10] Y. Félix, S. Halperin & J.-C. Thomas, Rational homotopy theory, Graduate Texts in Math. 205, Springer, 2001. Zbl0961.55002
- [11] Y. Félix & J.-C. Thomas, Rational BV-algebra in string topology, Bull. Soc. Math. France136 (2008), 311–327. Zbl1160.55006
- [12] Y. Felix, J.-C. Thomas & M. Vigué-Poirrier, The Hochschild cohomology of a closed manifold, Publ. Math. Inst. Hautes Études Sci.99 (2004), 235–252. Zbl1060.57019
- [13] Y. Félix, J.-C. Thomas & M. Vigué-Poirrier, Rational string topology, J. Eur. Math. Soc.9 (2007), 123–156. Zbl1200.55015
- [14] E. Getzler, J. D. S. Jones & S. Petrack, Differential forms on loop spaces and the cyclic bar complex, Topology30 (1991), 339–371. Zbl0729.58004
- [15] G. Ginot, Higher order Hochschild cohomology, C. R. Math. Acad. Sci. Paris346 (2008), 5–10. Zbl1157.53042
- [16] P. G. Goerss & J. F. Jardine, Simplicial homotopy theory, Progress in Math. 174, Birkhäuser, 1999. Zbl0949.55001MR1711612
- [17] T. G. Goodwillie, Relative algebraic -theory and cyclic homology, Ann. of Math.124 (1986), 347–402. Zbl0627.18004MR855300
- [18] A. Haefliger, Rational homotopy of the space of sections of a nilpotent bundle, Trans. Amer. Math. Soc.273 (1982), 609–620. Zbl0508.55019MR667163
- [19] P. Hu, Higher string topology on general spaces, Proc. London Math. Soc.93 (2006), 515–544. Zbl1103.55008MR2251161
- [20] P. Lambrechts & D. Stanley, Poincaré duality and commutative differential graded algebras, Ann. Sci. Éc. Norm. Supér. 41 (2008), 495–509. Zbl1172.13009MR2489632
- [21] J.-L. Loday, Cyclic homology, Grund. Math. Wiss. 301, Springer, 1992. Zbl0780.18009MR1217970
- [22] S. MacLane, Homology, first éd., Grundl. der math. Wiss. 114, Springer, 1967. Zbl0133.26502MR349792
- [23] R. McCarthy, On operations for Hochschild homology, Comm. Algebra21 (1993), 2947–2965. Zbl0809.18009MR1222750
- [24] F. Patras & J.-C. Thomas, Cochain algebras of mapping spaces and finite group actions, Topology Appl.128 (2003), 189–207. Zbl1027.55017MR1956614
- [25] T. Pirashvili, Hodge decomposition for higher order Hochschild homology, Ann. Sci. École Norm. Sup.33 (2000), 151–179. Zbl0957.18004MR1755114
- [26] D. Quillen, Rational homotopy theory, Ann. of Math.90 (1969), 205–295. Zbl0191.53702MR258031
- [27] D. Sullivan, Infinitesimal computations in topology, Publ. Math. I.H.É.S. 47 (1977), 269–331. Zbl0374.57002MR646078
- [28] D. Sullivan, Sigma models and string topology, in Graphs and patterns in mathematics and theoretical physics, Proc. Sympos. Pure Math. 73, Amer. Math. Soc., 2005, 1–11. Zbl1080.53085MR2131009
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.