A Chen model for mapping spaces and the surface product
Grégory Ginot; Thomas Tradler; Mahmoud Zeinalian
Annales scientifiques de l'École Normale Supérieure (2010)
- Volume: 43, Issue: 5, page 811-881
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] K. Behrend, G. Ginot, B. Noohi & P. Xu, String topology for stacks, preprint arXiv:math/0712.3857. Zbl1253.55007MR2977576
- [2] M. Bökstedt, W. C. Hsiang & I. Madsen, The cyclotomic trace and algebraic -theory of spaces, Invent. Math.111 (1993), 465–539. Zbl0804.55004MR1202133
- [3] E. H. J. Brown & R. H. Szczarba, On the rational homotopy type of function spaces, Trans. Amer. Math. Soc.349 (1997), 4931–4951. Zbl0927.55012MR1407482
- [4] D. Burghelea & M. Vigué-Poirrier, Cyclic homology of commutative algebras. I, in Algebraic topology—rational homotopy (Louvain-la-Neuve, 1986), Lecture Notes in Math. 1318, Springer, 1988, 51–72. Zbl0666.13007MR952571
- [5] M. Chas & D. Sullivan, String topology, preprint arXiv:9911159.
- [6] K. T. Chen, Iterated integrals of differential forms and loop space homology, Ann. of Math.97 (1973), 217–246. Zbl0227.58003
- [7] K. T. Chen, Iterated path integrals, Bull. Amer. Math. Soc.83 (1977), 831–879. Zbl0389.58001
- [8] R. L. Cohen & J. D. S. Jones, A homotopy theoretic realization of string topology, Math. Ann.324 (2002), 773–798. Zbl1025.55005
- [9] R. L. Cohen & A. A. Voronov, Notes on string topology, in String topology and cyclic homology, Adv. Courses Math. CRM Barcelona, Birkhäuser, 2006, 1–95. Zbl1089.57002
- [10] Y. Félix, S. Halperin & J.-C. Thomas, Rational homotopy theory, Graduate Texts in Math. 205, Springer, 2001. Zbl0961.55002
- [11] Y. Félix & J.-C. Thomas, Rational BV-algebra in string topology, Bull. Soc. Math. France136 (2008), 311–327. Zbl1160.55006
- [12] Y. Felix, J.-C. Thomas & M. Vigué-Poirrier, The Hochschild cohomology of a closed manifold, Publ. Math. Inst. Hautes Études Sci.99 (2004), 235–252. Zbl1060.57019
- [13] Y. Félix, J.-C. Thomas & M. Vigué-Poirrier, Rational string topology, J. Eur. Math. Soc.9 (2007), 123–156. Zbl1200.55015
- [14] E. Getzler, J. D. S. Jones & S. Petrack, Differential forms on loop spaces and the cyclic bar complex, Topology30 (1991), 339–371. Zbl0729.58004
- [15] G. Ginot, Higher order Hochschild cohomology, C. R. Math. Acad. Sci. Paris346 (2008), 5–10. Zbl1157.53042
- [16] P. G. Goerss & J. F. Jardine, Simplicial homotopy theory, Progress in Math. 174, Birkhäuser, 1999. Zbl0949.55001MR1711612
- [17] T. G. Goodwillie, Relative algebraic -theory and cyclic homology, Ann. of Math.124 (1986), 347–402. Zbl0627.18004MR855300
- [18] A. Haefliger, Rational homotopy of the space of sections of a nilpotent bundle, Trans. Amer. Math. Soc.273 (1982), 609–620. Zbl0508.55019MR667163
- [19] P. Hu, Higher string topology on general spaces, Proc. London Math. Soc.93 (2006), 515–544. Zbl1103.55008MR2251161
- [20] P. Lambrechts & D. Stanley, Poincaré duality and commutative differential graded algebras, Ann. Sci. Éc. Norm. Supér. 41 (2008), 495–509. Zbl1172.13009MR2489632
- [21] J.-L. Loday, Cyclic homology, Grund. Math. Wiss. 301, Springer, 1992. Zbl0780.18009MR1217970
- [22] S. MacLane, Homology, first éd., Grundl. der math. Wiss. 114, Springer, 1967. Zbl0133.26502MR349792
- [23] R. McCarthy, On operations for Hochschild homology, Comm. Algebra21 (1993), 2947–2965. Zbl0809.18009MR1222750
- [24] F. Patras & J.-C. Thomas, Cochain algebras of mapping spaces and finite group actions, Topology Appl.128 (2003), 189–207. Zbl1027.55017MR1956614
- [25] T. Pirashvili, Hodge decomposition for higher order Hochschild homology, Ann. Sci. École Norm. Sup.33 (2000), 151–179. Zbl0957.18004MR1755114
- [26] D. Quillen, Rational homotopy theory, Ann. of Math.90 (1969), 205–295. Zbl0191.53702MR258031
- [27] D. Sullivan, Infinitesimal computations in topology, Publ. Math. I.H.É.S. 47 (1977), 269–331. Zbl0374.57002MR646078
- [28] D. Sullivan, Sigma models and string topology, in Graphs and patterns in mathematics and theoretical physics, Proc. Sympos. Pure Math. 73, Amer. Math. Soc., 2005, 1–11. Zbl1080.53085MR2131009