Rabinowitz Floer homology and symplectic homology

Kai Cieliebak; Urs Frauenfelder; Alexandru Oancea

Annales scientifiques de l'École Normale Supérieure (2010)

  • Volume: 43, Issue: 6, page 957-1015
  • ISSN: 0012-9593

Abstract

top
The first two authors have recently defined Rabinowitz Floer homology groups R F H * ( M , W ) associated to a separating exact embedding of a contact manifold ( M , ξ ) into a symplectic manifold ( W , ω ) . These depend only on the bounded component V of W M . We construct a long exact sequence in which symplectic cohomology of V maps to symplectic homology of V , which in turn maps to Rabinowitz Floer homology R F H * ( M , W ) , which then maps to symplectic cohomology of V . We compute R F H * ( S T * L , T * L ) , where S T * L is the unit cosphere bundle of a closed manifold L . As an application, we prove that the image of a separating exact contact embedding of S T * L cannot be displaced away from itself by a Hamiltonian isotopy, provided dim L 4 and the embedding induces an injection on π 1 .

How to cite

top

Cieliebak, Kai, Frauenfelder, Urs, and Oancea, Alexandru. "Rabinowitz Floer homology and symplectic homology." Annales scientifiques de l'École Normale Supérieure 43.6 (2010): 957-1015. <http://eudml.org/doc/272182>.

@article{Cieliebak2010,
abstract = {The first two authors have recently defined Rabinowitz Floer homology groups $RFH_*(M,W)$ associated to a separating exact embedding of a contact manifold $(M,\xi )$ into a symplectic manifold $(W,\omega )$. These depend only on the bounded component $V$ of $W\setminus M$. We construct a long exact sequence in which symplectic cohomology of $V$ maps to symplectic homology of $V$, which in turn maps to Rabinowitz Floer homology $RFH_*(M,W)$, which then maps to symplectic cohomology of $V$. We compute $RFH_*(ST^*L,T^*L)$, where $ST^*L$ is the unit cosphere bundle of a closed manifold $L$. As an application, we prove that the image of a separating exact contact embedding of $ST^*L$ cannot be displaced away from itself by a Hamiltonian isotopy, provided $\dim \,L\ge 4$ and the embedding induces an injection on $\pi _1$.},
author = {Cieliebak, Kai, Frauenfelder, Urs, Oancea, Alexandru},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {symplectic homology; Rabinowitz Floer homology; contact embeddings; free loop space},
language = {eng},
number = {6},
pages = {957-1015},
publisher = {Société mathématique de France},
title = {Rabinowitz Floer homology and symplectic homology},
url = {http://eudml.org/doc/272182},
volume = {43},
year = {2010},
}

TY - JOUR
AU - Cieliebak, Kai
AU - Frauenfelder, Urs
AU - Oancea, Alexandru
TI - Rabinowitz Floer homology and symplectic homology
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2010
PB - Société mathématique de France
VL - 43
IS - 6
SP - 957
EP - 1015
AB - The first two authors have recently defined Rabinowitz Floer homology groups $RFH_*(M,W)$ associated to a separating exact embedding of a contact manifold $(M,\xi )$ into a symplectic manifold $(W,\omega )$. These depend only on the bounded component $V$ of $W\setminus M$. We construct a long exact sequence in which symplectic cohomology of $V$ maps to symplectic homology of $V$, which in turn maps to Rabinowitz Floer homology $RFH_*(M,W)$, which then maps to symplectic cohomology of $V$. We compute $RFH_*(ST^*L,T^*L)$, where $ST^*L$ is the unit cosphere bundle of a closed manifold $L$. As an application, we prove that the image of a separating exact contact embedding of $ST^*L$ cannot be displaced away from itself by a Hamiltonian isotopy, provided $\dim \,L\ge 4$ and the embedding induces an injection on $\pi _1$.
LA - eng
KW - symplectic homology; Rabinowitz Floer homology; contact embeddings; free loop space
UR - http://eudml.org/doc/272182
ER -

References

top
  1. [1] A. Abbondandolo & M. Schwarz, On the Floer homology of cotangent bundles, Comm. Pure Appl. Math.59 (2006), 254–316. Zbl1084.53074MR2190223
  2. [2] P. Biran, Lagrangian non-intersections, Geom. Funct. Anal.16 (2006), 279–326. Zbl1099.53054MR2231465
  3. [3] P. Biran & K. Cieliebak, Lagrangian embeddings into subcritical Stein manifolds, Israel J. Math.127 (2002), 221–244. Zbl1165.53378MR1900700
  4. [4] F. Bourgeois, Y. Eliashberg, H. Hofer, K. Wysocki & E. Zehnder, Compactness results in symplectic field theory, Geom. Topol.7 (2003), 799–888. Zbl1131.53312MR2026549
  5. [5] F. Bourgeois & A. Oancea, An exact sequence for contact- and symplectic homology, Invent. Math.175 (2009), 611–680. Zbl1167.53071MR2471597
  6. [6] F. Bourgeois & A. Oancea, Symplectic homology, autonomous Hamiltonians, and Morse-Bott moduli spaces, Duke Math. J.146 (2009), 71–174. Zbl1158.53067MR2475400
  7. [7] G. E. Bredon, Topology and geometry, Graduate Texts in Math. 139, Springer, 1993. Zbl0791.55001MR1224675
  8. [8] K. Cieliebak, Handle attaching in symplectic homology and the chord conjecture, J. Eur. Math. Soc. (JEMS) 4 (2002), 115–142. Zbl1012.53066MR1911873
  9. [9] K. Cieliebak, A. Floer, H. Hofer & K. Wysocki, Applications of symplectic homology. II. Stability of the action spectrum, Math. Z. 223 (1996), 27–45. Zbl0869.58013MR1408861
  10. [10] K. Cieliebak & U. A. Frauenfelder, A Floer homology for exact contact embeddings, Pacific J. Math.239 (2009), 251–316. Zbl1221.53112MR2461235
  11. [11] K. Cieliebak & U. A. Frauenfelder, Morse homology on noncompact manifolds, preprint arXiv:0911.1805. Zbl1232.53076
  12. [12] K. Cieliebak, U. A. Frauenfelder & G. P. Paternain, Symplectic topology of Mañé’s critical values, Geometry & Topology 14 (2010), 1765–1870. Zbl1239.53110MR2679582
  13. [13] S. Eilenberg & N. Steenrod, Foundations of algebraic topology, Princeton Univ. Press, 1952. Zbl0047.41402MR50886
  14. [14] H. Hofer & D. Salamon, Floer homology and Novikov rings, in The Floer memorial volume, Progr. Math. 133, Birkhäuser, 1995, 483–524. Zbl0842.58029MR1362838
  15. [15] M. McLean, Lefschetz fibrations and symplectic homology, Geom. Topol.13 (2009), 1877–1944. Zbl1170.53070MR2497314
  16. [16] A. Oancea, A survey of Floer homology for manifolds with contact type boundary or symplectic homology, in Symplectic geometry and Floer homology. A survey of the Floer homology for manifolds with contact type boundary or symplectic homology, Ensaios Mat. 7, Soc. Brasil. Mat., 2004, 51–91. Zbl1070.53056MR2100955
  17. [17] A. Oancea, The Künneth formula in Floer homology for manifolds with restricted contact type boundary, Math. Ann.334 (2006), 65–89. Zbl1087.53078MR2208949
  18. [18] A. Ritter, Topological quantum field theory structure on symplectic cohomology, preprint arXiv:1003.1781. Zbl1298.53093MR3065181
  19. [19] J. Robbin & D. Salamon, The Maslov index for paths, Topology32 (1993), 827–844. Zbl0798.58018MR1241874
  20. [20] D. Salamon, Lectures on Floer homology, in Symplectic geometry and topology (Park City, UT, 1997), IAS/Park City Math. Ser. 7, Amer. Math. Soc., 1999, 143–229. Zbl1031.53118MR1702944
  21. [21] D. Salamon & J. Weber, Floer homology and the heat flow, Geom. Funct. Anal.16 (2006), 1050–1138. Zbl1118.53056MR2276534
  22. [22] D. Salamon & E. Zehnder, Morse theory for periodic solutions of Hamiltonian systems and the Maslov index, Comm. Pure Appl. Math.45 (1992), 1303–1360. Zbl0766.58023MR1181727
  23. [23] F. Schlenk, Applications of Hofer’s geometry to Hamiltonian dynamics, Comment. Math. Helv.81 (2006), 105–121. Zbl1094.37031MR2208800
  24. [24] M. Schwarz, Morse homology, Progress in Math. 111, Birkhäuser, 1993. Zbl0806.57020MR1239174
  25. [25] P. Seidel, A biased view of symplectic cohomology, in Current developments in mathematics, 2006, Int. Press, Somerville, MA, 2008, 211–253. Zbl1165.57020MR2459307
  26. [26] J.-C. Sikorav, Some properties of holomorphic curves in almost complex manifolds, in Holomorphic curves in symplectic geometry, Progr. Math. 117, Birkhäuser, 1994, 165–189. MR1274929
  27. [27] M. Vigué-Poirrier & D. Sullivan, The homology theory of the closed geodesic problem, J. Differential Geometry11 (1976), 633–644. Zbl0361.53058MR455028
  28. [28] C. Viterbo, A new obstruction to embedding Lagrangian tori, Invent. Math.100 (1990), 301–320. Zbl0727.58015MR1047136
  29. [29] C. Viterbo, Functors and computations in Floer homology with applications. I, Geom. Funct. Anal. 9 (1999), 985–1033. Zbl0954.57015MR1726235
  30. [30] C. Viterbo, Functors and computations in Floer homology with applications. II, preprint Université Paris-Sud no 98-15, 1998. Zbl0954.57015

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.