Rabinowitz Floer homology and symplectic homology
Kai Cieliebak; Urs Frauenfelder; Alexandru Oancea
Annales scientifiques de l'École Normale Supérieure (2010)
- Volume: 43, Issue: 6, page 957-1015
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topCieliebak, Kai, Frauenfelder, Urs, and Oancea, Alexandru. "Rabinowitz Floer homology and symplectic homology." Annales scientifiques de l'École Normale Supérieure 43.6 (2010): 957-1015. <http://eudml.org/doc/272182>.
@article{Cieliebak2010,
abstract = {The first two authors have recently defined Rabinowitz Floer homology groups $RFH_*(M,W)$ associated to a separating exact embedding of a contact manifold $(M,\xi )$ into a symplectic manifold $(W,\omega )$. These depend only on the bounded component $V$ of $W\setminus M$. We construct a long exact sequence in which symplectic cohomology of $V$ maps to symplectic homology of $V$, which in turn maps to Rabinowitz Floer homology $RFH_*(M,W)$, which then maps to symplectic cohomology of $V$. We compute $RFH_*(ST^*L,T^*L)$, where $ST^*L$ is the unit cosphere bundle of a closed manifold $L$. As an application, we prove that the image of a separating exact contact embedding of $ST^*L$ cannot be displaced away from itself by a Hamiltonian isotopy, provided $\dim \,L\ge 4$ and the embedding induces an injection on $\pi _1$.},
author = {Cieliebak, Kai, Frauenfelder, Urs, Oancea, Alexandru},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {symplectic homology; Rabinowitz Floer homology; contact embeddings; free loop space},
language = {eng},
number = {6},
pages = {957-1015},
publisher = {Société mathématique de France},
title = {Rabinowitz Floer homology and symplectic homology},
url = {http://eudml.org/doc/272182},
volume = {43},
year = {2010},
}
TY - JOUR
AU - Cieliebak, Kai
AU - Frauenfelder, Urs
AU - Oancea, Alexandru
TI - Rabinowitz Floer homology and symplectic homology
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2010
PB - Société mathématique de France
VL - 43
IS - 6
SP - 957
EP - 1015
AB - The first two authors have recently defined Rabinowitz Floer homology groups $RFH_*(M,W)$ associated to a separating exact embedding of a contact manifold $(M,\xi )$ into a symplectic manifold $(W,\omega )$. These depend only on the bounded component $V$ of $W\setminus M$. We construct a long exact sequence in which symplectic cohomology of $V$ maps to symplectic homology of $V$, which in turn maps to Rabinowitz Floer homology $RFH_*(M,W)$, which then maps to symplectic cohomology of $V$. We compute $RFH_*(ST^*L,T^*L)$, where $ST^*L$ is the unit cosphere bundle of a closed manifold $L$. As an application, we prove that the image of a separating exact contact embedding of $ST^*L$ cannot be displaced away from itself by a Hamiltonian isotopy, provided $\dim \,L\ge 4$ and the embedding induces an injection on $\pi _1$.
LA - eng
KW - symplectic homology; Rabinowitz Floer homology; contact embeddings; free loop space
UR - http://eudml.org/doc/272182
ER -
References
top- [1] A. Abbondandolo & M. Schwarz, On the Floer homology of cotangent bundles, Comm. Pure Appl. Math.59 (2006), 254–316. Zbl1084.53074MR2190223
- [2] P. Biran, Lagrangian non-intersections, Geom. Funct. Anal.16 (2006), 279–326. Zbl1099.53054MR2231465
- [3] P. Biran & K. Cieliebak, Lagrangian embeddings into subcritical Stein manifolds, Israel J. Math.127 (2002), 221–244. Zbl1165.53378MR1900700
- [4] F. Bourgeois, Y. Eliashberg, H. Hofer, K. Wysocki & E. Zehnder, Compactness results in symplectic field theory, Geom. Topol.7 (2003), 799–888. Zbl1131.53312MR2026549
- [5] F. Bourgeois & A. Oancea, An exact sequence for contact- and symplectic homology, Invent. Math.175 (2009), 611–680. Zbl1167.53071MR2471597
- [6] F. Bourgeois & A. Oancea, Symplectic homology, autonomous Hamiltonians, and Morse-Bott moduli spaces, Duke Math. J.146 (2009), 71–174. Zbl1158.53067MR2475400
- [7] G. E. Bredon, Topology and geometry, Graduate Texts in Math. 139, Springer, 1993. Zbl0791.55001MR1224675
- [8] K. Cieliebak, Handle attaching in symplectic homology and the chord conjecture, J. Eur. Math. Soc. (JEMS) 4 (2002), 115–142. Zbl1012.53066MR1911873
- [9] K. Cieliebak, A. Floer, H. Hofer & K. Wysocki, Applications of symplectic homology. II. Stability of the action spectrum, Math. Z. 223 (1996), 27–45. Zbl0869.58013MR1408861
- [10] K. Cieliebak & U. A. Frauenfelder, A Floer homology for exact contact embeddings, Pacific J. Math.239 (2009), 251–316. Zbl1221.53112MR2461235
- [11] K. Cieliebak & U. A. Frauenfelder, Morse homology on noncompact manifolds, preprint arXiv:0911.1805. Zbl1232.53076
- [12] K. Cieliebak, U. A. Frauenfelder & G. P. Paternain, Symplectic topology of Mañé’s critical values, Geometry & Topology 14 (2010), 1765–1870. Zbl1239.53110MR2679582
- [13] S. Eilenberg & N. Steenrod, Foundations of algebraic topology, Princeton Univ. Press, 1952. Zbl0047.41402MR50886
- [14] H. Hofer & D. Salamon, Floer homology and Novikov rings, in The Floer memorial volume, Progr. Math. 133, Birkhäuser, 1995, 483–524. Zbl0842.58029MR1362838
- [15] M. McLean, Lefschetz fibrations and symplectic homology, Geom. Topol.13 (2009), 1877–1944. Zbl1170.53070MR2497314
- [16] A. Oancea, A survey of Floer homology for manifolds with contact type boundary or symplectic homology, in Symplectic geometry and Floer homology. A survey of the Floer homology for manifolds with contact type boundary or symplectic homology, Ensaios Mat. 7, Soc. Brasil. Mat., 2004, 51–91. Zbl1070.53056MR2100955
- [17] A. Oancea, The Künneth formula in Floer homology for manifolds with restricted contact type boundary, Math. Ann.334 (2006), 65–89. Zbl1087.53078MR2208949
- [18] A. Ritter, Topological quantum field theory structure on symplectic cohomology, preprint arXiv:1003.1781. Zbl1298.53093MR3065181
- [19] J. Robbin & D. Salamon, The Maslov index for paths, Topology32 (1993), 827–844. Zbl0798.58018MR1241874
- [20] D. Salamon, Lectures on Floer homology, in Symplectic geometry and topology (Park City, UT, 1997), IAS/Park City Math. Ser. 7, Amer. Math. Soc., 1999, 143–229. Zbl1031.53118MR1702944
- [21] D. Salamon & J. Weber, Floer homology and the heat flow, Geom. Funct. Anal.16 (2006), 1050–1138. Zbl1118.53056MR2276534
- [22] D. Salamon & E. Zehnder, Morse theory for periodic solutions of Hamiltonian systems and the Maslov index, Comm. Pure Appl. Math.45 (1992), 1303–1360. Zbl0766.58023MR1181727
- [23] F. Schlenk, Applications of Hofer’s geometry to Hamiltonian dynamics, Comment. Math. Helv.81 (2006), 105–121. Zbl1094.37031MR2208800
- [24] M. Schwarz, Morse homology, Progress in Math. 111, Birkhäuser, 1993. Zbl0806.57020MR1239174
- [25] P. Seidel, A biased view of symplectic cohomology, in Current developments in mathematics, 2006, Int. Press, Somerville, MA, 2008, 211–253. Zbl1165.57020MR2459307
- [26] J.-C. Sikorav, Some properties of holomorphic curves in almost complex manifolds, in Holomorphic curves in symplectic geometry, Progr. Math. 117, Birkhäuser, 1994, 165–189. MR1274929
- [27] M. Vigué-Poirrier & D. Sullivan, The homology theory of the closed geodesic problem, J. Differential Geometry11 (1976), 633–644. Zbl0361.53058MR455028
- [28] C. Viterbo, A new obstruction to embedding Lagrangian tori, Invent. Math.100 (1990), 301–320. Zbl0727.58015MR1047136
- [29] C. Viterbo, Functors and computations in Floer homology with applications. I, Geom. Funct. Anal. 9 (1999), 985–1033. Zbl0954.57015MR1726235
- [30] C. Viterbo, Functors and computations in Floer homology with applications. II, preprint Université Paris-Sud no 98-15, 1998. Zbl0954.57015
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.