Deligne-Lusztig restriction of a Gelfand-Graev module
Annales scientifiques de l'École Normale Supérieure (2009)
- Volume: 42, Issue: 4, page 653-674
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topDudas, Olivier. "Deligne-Lusztig restriction of a Gelfand-Graev module." Annales scientifiques de l'École Normale Supérieure 42.4 (2009): 653-674. <http://eudml.org/doc/272192>.
@article{Dudas2009,
abstract = {Using Deodhar’s decomposition of a double Schubert cell, we study the regular representations of finite groups of Lie type arising in the cohomology of Deligne-Lusztig varieties associated to tori. We deduce that the Deligne-Lusztig restriction of a Gelfand-Graev module is a shifted Gelfand-Graev module.},
author = {Dudas, Olivier},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Gelfand-Graev; Deligne-Lusztig; Deodhar decomposition; Bialynicki-Birula decomposition},
language = {eng},
number = {4},
pages = {653-674},
publisher = {Société mathématique de France},
title = {Deligne-Lusztig restriction of a Gelfand-Graev module},
url = {http://eudml.org/doc/272192},
volume = {42},
year = {2009},
}
TY - JOUR
AU - Dudas, Olivier
TI - Deligne-Lusztig restriction of a Gelfand-Graev module
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2009
PB - Société mathématique de France
VL - 42
IS - 4
SP - 653
EP - 674
AB - Using Deodhar’s decomposition of a double Schubert cell, we study the regular representations of finite groups of Lie type arising in the cohomology of Deligne-Lusztig varieties associated to tori. We deduce that the Deligne-Lusztig restriction of a Gelfand-Graev module is a shifted Gelfand-Graev module.
LA - eng
KW - Gelfand-Graev; Deligne-Lusztig; Deodhar decomposition; Bialynicki-Birula decomposition
UR - http://eudml.org/doc/272192
ER -
References
top- [1] A. Białynicki-Birula, Some theorems on actions of algebraic groups, Ann. of Math.98 (1973), 480–497. Zbl0275.14007MR366940
- [2] A. Białynicki-Birula, Some properties of the decompositions of algebraic varieties determined by actions of a torus, Bull. Acad. Polon. Sci.24 (1976), 667–674. Zbl0355.14015MR453766
- [3] C. Bonnafé & R. Kessar, On the endomorphism algebras of modular Gelfand-Graev representations, J. Algebra320 (2008), 2847–2870. Zbl1197.20037MR2441999
- [4] C. Bonnafé & R. Rouquier, Catégories dérivées et variétés de Deligne-Lusztig, Publ. Math. IHÉS97 (2003), 1–59. Zbl1054.20024MR2010739
- [5] C. Bonnafé & R. Rouquier, Coxeter orbits and modular representations, Nagoya Math. J.183 (2006), 1–34. Zbl1109.20038MR2253885
- [6] R. W. Carter, Finite groups of Lie type. Conjugacy classes and complex characters, Pure and Applied Mathematics, John Wiley & Sons Inc., 1985. Zbl0567.20023MR794307
- [7] P. Deligne & G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math.103 (1976), 103–161. Zbl0336.20029MR393266
- [8] M. Demazure, Désingularisation des variétés de Schubert généralisées, Ann. Sci. École Norm. Sup.7 (1974), 53–88. Zbl0312.14009MR354697
- [9] V. V. Deodhar, On some geometric aspects of Bruhat orderings. I. A finer decomposition of Bruhat cells, Invent. Math. 79 (1985), 499–511. Zbl0563.14023MR782232
- [10] F. Digne, J. Michel & R. Rouquier, Cohomologie des variétés de Deligne-Lusztig, Adv. Math.209 (2007), 749–822. Zbl1118.20006MR2296313
- [11] O. Dudas, Note on the Deodhar decomposition of a double Schubert cell, preprint arXiv:0807.2198, 2008.
- [12] A. Grothendieck et al., Revêtements étales et groupe fondamental, in Séminaire de Géométrie Algébrique du Bois Marie 1960–1961 (SGA 1), Lecture Notes in Math. 224, Springer, 1971. Zbl0234.14002
- [13] A. Grothendieck et al., Théorie des topos et cohomologie étale des schémas. Tome 2, in Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4), Lecture Notes in Math. 270, Springer, 1972. Zbl0237.00012
- [14] M. Härterich, The -equivariant cohomology of Bott-Samelson varieties, preprint arXiv:math.AG/0412337, 2004.
- [15] R. B. Howlett, On the degrees of Steinberg characters of Chevalley groups, Math. Z. 135 (1973/74), 125–135. Zbl0261.20033MR360781
- [16] G. Laumon, Majorations de sommes trigonométriques (d’après P. Deligne et N. Katz), Astérisque83 (1981), 221–258. Zbl0494.14010MR629129
- [17] G. Lusztig, Coxeter orbits and eigenspaces of Frobenius, Invent. Math. 38 (1976/77), 101–159. Zbl0366.20031MR453885
- [18] S. Morel, Note sur les polynômes de Kazhdan-Lusztig, preprint arXiv:math.AG/0603519, 2006. Zbl1233.20005
- [19] R. W. Richardson, Intersections of double cosets in algebraic groups, Indag. Math. (N.S.) 3 (1992), 69–77. Zbl0833.22001MR1157520
- [20] R. Steinberg, Lectures on Chevalley groups, Yale University, New Haven, Conn., 1968. Zbl1196.22001MR466335
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.