Deligne-Lusztig restriction of a Gelfand-Graev module

Olivier Dudas

Annales scientifiques de l'École Normale Supérieure (2009)

  • Volume: 42, Issue: 4, page 653-674
  • ISSN: 0012-9593

Abstract

top
Using Deodhar’s decomposition of a double Schubert cell, we study the regular representations of finite groups of Lie type arising in the cohomology of Deligne-Lusztig varieties associated to tori. We deduce that the Deligne-Lusztig restriction of a Gelfand-Graev module is a shifted Gelfand-Graev module.

How to cite

top

Dudas, Olivier. "Deligne-Lusztig restriction of a Gelfand-Graev module." Annales scientifiques de l'École Normale Supérieure 42.4 (2009): 653-674. <http://eudml.org/doc/272192>.

@article{Dudas2009,
abstract = {Using Deodhar’s decomposition of a double Schubert cell, we study the regular representations of finite groups of Lie type arising in the cohomology of Deligne-Lusztig varieties associated to tori. We deduce that the Deligne-Lusztig restriction of a Gelfand-Graev module is a shifted Gelfand-Graev module.},
author = {Dudas, Olivier},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Gelfand-Graev; Deligne-Lusztig; Deodhar decomposition; Bialynicki-Birula decomposition},
language = {eng},
number = {4},
pages = {653-674},
publisher = {Société mathématique de France},
title = {Deligne-Lusztig restriction of a Gelfand-Graev module},
url = {http://eudml.org/doc/272192},
volume = {42},
year = {2009},
}

TY - JOUR
AU - Dudas, Olivier
TI - Deligne-Lusztig restriction of a Gelfand-Graev module
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2009
PB - Société mathématique de France
VL - 42
IS - 4
SP - 653
EP - 674
AB - Using Deodhar’s decomposition of a double Schubert cell, we study the regular representations of finite groups of Lie type arising in the cohomology of Deligne-Lusztig varieties associated to tori. We deduce that the Deligne-Lusztig restriction of a Gelfand-Graev module is a shifted Gelfand-Graev module.
LA - eng
KW - Gelfand-Graev; Deligne-Lusztig; Deodhar decomposition; Bialynicki-Birula decomposition
UR - http://eudml.org/doc/272192
ER -

References

top
  1. [1] A. Białynicki-Birula, Some theorems on actions of algebraic groups, Ann. of Math.98 (1973), 480–497. Zbl0275.14007MR366940
  2. [2] A. Białynicki-Birula, Some properties of the decompositions of algebraic varieties determined by actions of a torus, Bull. Acad. Polon. Sci.24 (1976), 667–674. Zbl0355.14015MR453766
  3. [3] C. Bonnafé & R. Kessar, On the endomorphism algebras of modular Gelfand-Graev representations, J. Algebra320 (2008), 2847–2870. Zbl1197.20037MR2441999
  4. [4] C. Bonnafé & R. Rouquier, Catégories dérivées et variétés de Deligne-Lusztig, Publ. Math. IHÉS97 (2003), 1–59. Zbl1054.20024MR2010739
  5. [5] C. Bonnafé & R. Rouquier, Coxeter orbits and modular representations, Nagoya Math. J.183 (2006), 1–34. Zbl1109.20038MR2253885
  6. [6] R. W. Carter, Finite groups of Lie type. Conjugacy classes and complex characters, Pure and Applied Mathematics, John Wiley & Sons Inc., 1985. Zbl0567.20023MR794307
  7. [7] P. Deligne & G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math.103 (1976), 103–161. Zbl0336.20029MR393266
  8. [8] M. Demazure, Désingularisation des variétés de Schubert généralisées, Ann. Sci. École Norm. Sup.7 (1974), 53–88. Zbl0312.14009MR354697
  9. [9] V. V. Deodhar, On some geometric aspects of Bruhat orderings. I. A finer decomposition of Bruhat cells, Invent. Math. 79 (1985), 499–511. Zbl0563.14023MR782232
  10. [10] F. Digne, J. Michel & R. Rouquier, Cohomologie des variétés de Deligne-Lusztig, Adv. Math.209 (2007), 749–822. Zbl1118.20006MR2296313
  11. [11] O. Dudas, Note on the Deodhar decomposition of a double Schubert cell, preprint arXiv:0807.2198, 2008. 
  12. [12] A. Grothendieck et al., Revêtements étales et groupe fondamental, in Séminaire de Géométrie Algébrique du Bois Marie 1960–1961 (SGA 1), Lecture Notes in Math. 224, Springer, 1971. Zbl0234.14002
  13. [13] A. Grothendieck et al., Théorie des topos et cohomologie étale des schémas. Tome 2, in Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4), Lecture Notes in Math. 270, Springer, 1972. Zbl0237.00012
  14. [14] M. Härterich, The T -equivariant cohomology of Bott-Samelson varieties, preprint arXiv:math.AG/0412337, 2004. 
  15. [15] R. B. Howlett, On the degrees of Steinberg characters of Chevalley groups, Math. Z. 135 (1973/74), 125–135. Zbl0261.20033MR360781
  16. [16] G. Laumon, Majorations de sommes trigonométriques (d’après P. Deligne et N. Katz), Astérisque83 (1981), 221–258. Zbl0494.14010MR629129
  17. [17] G. Lusztig, Coxeter orbits and eigenspaces of Frobenius, Invent. Math. 38 (1976/77), 101–159. Zbl0366.20031MR453885
  18. [18] S. Morel, Note sur les polynômes de Kazhdan-Lusztig, preprint arXiv:math.AG/0603519, 2006. Zbl1233.20005
  19. [19] R. W. Richardson, Intersections of double cosets in algebraic groups, Indag. Math. (N.S.) 3 (1992), 69–77. Zbl0833.22001MR1157520
  20. [20] R. Steinberg, Lectures on Chevalley groups, Yale University, New Haven, Conn., 1968. Zbl1196.22001MR466335

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.