Invariants, torsion indices and oriented cohomology of complete flags

Baptiste Calmès; Viktor Petrov; Kirill Zainoulline

Annales scientifiques de l'École Normale Supérieure (2013)

  • Volume: 46, Issue: 3, page 405-448
  • ISSN: 0012-9593

Abstract

top
Let  G be a split semisimple linear algebraic group over a field and let  T be a split maximal torus of  G . Let  𝗁 be an oriented cohomology (algebraic cobordism, connective K -theory, Chow groups, Grothendieck’s K 0 , etc.) with formal group law F . We construct a ring from F and the characters of  T , that we call a formal group ring, and we define a characteristic ring morphism c from this formal group ring to  𝗁 ( G / B ) where G / B is the variety of Borel subgroups of  G . Our main result says that when the torsion index of  G is inverted, c is surjective and its kernel is generated by elements invariant under the Weyl group of  G . As an application, we provide an algorithm to compute the ring structure of  𝗁 ( G / B ) and to describe the classes of desingularized Schubert varieties and their products.

How to cite

top

Calmès, Baptiste, Petrov, Viktor, and Zainoulline, Kirill. "Invariants, torsion indices and oriented cohomology of complete flags." Annales scientifiques de l'École Normale Supérieure 46.3 (2013): 405-448. <http://eudml.org/doc/272231>.

@article{Calmès2013,
abstract = {Let $G$ be a split semisimple linear algebraic group over a field and let $T$ be a split maximal torus of $G$. Let $\mathsf \{h\}$ be an oriented cohomology (algebraic cobordism, connective $K$-theory, Chow groups, Grothendieck’s $K_0$, etc.) with formal group law $F$. We construct a ring from $F$ and the characters of $T$, that we call a formal group ring, and we define a characteristic ring morphism $c$ from this formal group ring to $\mathsf \{h\}(G/B)$ where $G/B$ is the variety of Borel subgroups of $G$. Our main result says that when the torsion index of $G$ is inverted, $c$ is surjective and its kernel is generated by elements invariant under the Weyl group of $G$. As an application, we provide an algorithm to compute the ring structure of $\mathsf \{h\}(G/B)$ and to describe the classes of desingularized Schubert varieties and their products.},
author = {Calmès, Baptiste, Petrov, Viktor, Zainoulline, Kirill},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {linear algebraic group; oriented cohomology; formal group law},
language = {eng},
number = {3},
pages = {405-448},
publisher = {Société mathématique de France},
title = {Invariants, torsion indices and oriented cohomology of complete flags},
url = {http://eudml.org/doc/272231},
volume = {46},
year = {2013},
}

TY - JOUR
AU - Calmès, Baptiste
AU - Petrov, Viktor
AU - Zainoulline, Kirill
TI - Invariants, torsion indices and oriented cohomology of complete flags
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2013
PB - Société mathématique de France
VL - 46
IS - 3
SP - 405
EP - 448
AB - Let $G$ be a split semisimple linear algebraic group over a field and let $T$ be a split maximal torus of $G$. Let $\mathsf {h}$ be an oriented cohomology (algebraic cobordism, connective $K$-theory, Chow groups, Grothendieck’s $K_0$, etc.) with formal group law $F$. We construct a ring from $F$ and the characters of $T$, that we call a formal group ring, and we define a characteristic ring morphism $c$ from this formal group ring to $\mathsf {h}(G/B)$ where $G/B$ is the variety of Borel subgroups of $G$. Our main result says that when the torsion index of $G$ is inverted, $c$ is surjective and its kernel is generated by elements invariant under the Weyl group of $G$. As an application, we provide an algorithm to compute the ring structure of $\mathsf {h}(G/B)$ and to describe the classes of desingularized Schubert varieties and their products.
LA - eng
KW - linear algebraic group; oriented cohomology; formal group law
UR - http://eudml.org/doc/272231
ER -

References

top
  1. [1] R. Bott & H. Samelson, Applications of the theory of Morse to symmetric spaces, Amer. J. Math.80 (1958), 964–1029. Zbl0101.39702MR105694
  2. [2] N. Bourbaki, Éléments de mathématique. Algèbre. Chapitres 1 à 3, Hermann, 1970; réédition Springer, 2007. 
  3. [3] N. Bourbaki, Éléments de mathématique. Algèbre commutative. Chapitres 1 à 4, Masson, 1985; réédition Springer, 2006. Zbl0547.13002MR782296
  4. [4] P. Bressler & S. Evens, The Schubert calculus, braid relations, and generalized cohomology, Trans. Amer. Math. Soc.317 (1990), 799–811. Zbl0685.55004MR968883
  5. [5] P. Bressler & S. Evens, Schubert calculus in complex cobordism, Trans. Amer. Math. Soc.331 (1992), 799–813. Zbl0757.57018MR1044959
  6. [6] B. Calmès & V. Petrov, Cohomology of Borel varieties, a Macaulay 2 package, http://www.math.uni-bielefeld.de/~bcalmes/M2packages/cohbovar.html, 2009. 
  7. [7] M. Demazure, Invariants symétriques entiers des groupes de Weyl et torsion, Invent. Math.21 (1973), 287–301. Zbl0269.22010MR342522
  8. [8] M. Demazure, Désingularisation des variétés de Schubert généralisées, Ann. Sci. École Norm. Sup.7 (1974), 53–88. Zbl0312.14009MR354697
  9. [9] W. Fulton, Intersection theory, second éd., Ergebn. Math. Grenzg. 2, Springer, 1998. Zbl0885.14002MR1644323
  10. [10] D. R. Grayson & M. E. Stillman, Macaulay 2, a software system for research in algebraic geometry, http://www.math.uiuc.edu/Macaulay2/. 
  11. [11] R. Hartshorne, Algebraic geometry, Grad. Texts in Math. 52, Springer, 1977. MR463157
  12. [12] M. J. Hopkins, N. J. Kuhn & D. C. Ravenel, Generalized group characters and complex oriented cohomology theories, J. Amer. Math. Soc.13 (2000), 553–594. Zbl1007.55004MR1758754
  13. [13] J. Hornbostel & V. Kiritchenko, Schubert calculus for algebraic cobordism, J. reine angew. Math. 656 (2011), 59–85. MR2818856
  14. [14] M. Levine & F. Morel, Algebraic cobordism, Springer Monographs in Math., Springer, 2007. Zbl1188.14015MR2286826
  15. [15] A. Merkurjev, Algebraic oriented cohomology theories, in Algebraic number theory and algebraic geometry, Contemp. Math. 300, Amer. Math. Soc., 2002, 171–193. Zbl1051.14021MR1936372
  16. [16] I. Panin, Oriented cohomology theories of algebraic varieties, K -Theory 30 (2003), 265–314. MR2064242
  17. [17] I. Panin, Oriented cohomology theories of algebraic varieties. II (After I. Panin and A. Smirnov), Homology, Homotopy Appl. 11 (2009), 349–405. Zbl1169.14016MR2529164
  18. [18] A. Preygel, Algebraic cobordism of varieties with G-bundles, preprint arXiv:1007.0224. 
  19. [19] T. A. Springer, Schubert varieties and generalizations, in Representation theories and algebraic geometry (Montreal, PQ, 1997), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 514, Kluwer Acad. Publ., 1998, 413–440. MR1653040
  20. [20] B. Totaro, The torsion index of E 8 and other groups, Duke Math. J.129 (2005), 219–248. Zbl1093.57011MR2165542
  21. [21] B. Totaro, The torsion index of the spin groups, Duke Math. J.129 (2005), 249–290. Zbl1094.57031MR2165543
  22. [22] A. Vishik, Symmetric operations in algebraic cobordism, Adv. Math.213 (2007), 489–552. Zbl1129.14034MR2332601
  23. [23] A. Vishik & N. Yagita, Algebraic cobordisms of a Pfister quadric, J. Lond. Math. Soc.76 (2007), 586–604. Zbl1143.14016MR2377113
  24. [24] M. Willems, Cohomologie équivariante des tours de Bott et calcul de Schubert équivariant, J. Inst. Math. Jussieu5 (2006), 125–159. MR2195948

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.