Invariants, torsion indices and oriented cohomology of complete flags
Baptiste Calmès; Viktor Petrov; Kirill Zainoulline
Annales scientifiques de l'École Normale Supérieure (2013)
- Volume: 46, Issue: 3, page 405-448
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topCalmès, Baptiste, Petrov, Viktor, and Zainoulline, Kirill. "Invariants, torsion indices and oriented cohomology of complete flags." Annales scientifiques de l'École Normale Supérieure 46.3 (2013): 405-448. <http://eudml.org/doc/272231>.
@article{Calmès2013,
abstract = {Let $G$ be a split semisimple linear algebraic group over a field and let $T$ be a split maximal torus of $G$. Let $\mathsf \{h\}$ be an oriented cohomology (algebraic cobordism, connective $K$-theory, Chow groups, Grothendieck’s $K_0$, etc.) with formal group law $F$. We construct a ring from $F$ and the characters of $T$, that we call a formal group ring, and we define a characteristic ring morphism $c$ from this formal group ring to $\mathsf \{h\}(G/B)$ where $G/B$ is the variety of Borel subgroups of $G$. Our main result says that when the torsion index of $G$ is inverted, $c$ is surjective and its kernel is generated by elements invariant under the Weyl group of $G$. As an application, we provide an algorithm to compute the ring structure of $\mathsf \{h\}(G/B)$ and to describe the classes of desingularized Schubert varieties and their products.},
author = {Calmès, Baptiste, Petrov, Viktor, Zainoulline, Kirill},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {linear algebraic group; oriented cohomology; formal group law},
language = {eng},
number = {3},
pages = {405-448},
publisher = {Société mathématique de France},
title = {Invariants, torsion indices and oriented cohomology of complete flags},
url = {http://eudml.org/doc/272231},
volume = {46},
year = {2013},
}
TY - JOUR
AU - Calmès, Baptiste
AU - Petrov, Viktor
AU - Zainoulline, Kirill
TI - Invariants, torsion indices and oriented cohomology of complete flags
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2013
PB - Société mathématique de France
VL - 46
IS - 3
SP - 405
EP - 448
AB - Let $G$ be a split semisimple linear algebraic group over a field and let $T$ be a split maximal torus of $G$. Let $\mathsf {h}$ be an oriented cohomology (algebraic cobordism, connective $K$-theory, Chow groups, Grothendieck’s $K_0$, etc.) with formal group law $F$. We construct a ring from $F$ and the characters of $T$, that we call a formal group ring, and we define a characteristic ring morphism $c$ from this formal group ring to $\mathsf {h}(G/B)$ where $G/B$ is the variety of Borel subgroups of $G$. Our main result says that when the torsion index of $G$ is inverted, $c$ is surjective and its kernel is generated by elements invariant under the Weyl group of $G$. As an application, we provide an algorithm to compute the ring structure of $\mathsf {h}(G/B)$ and to describe the classes of desingularized Schubert varieties and their products.
LA - eng
KW - linear algebraic group; oriented cohomology; formal group law
UR - http://eudml.org/doc/272231
ER -
References
top- [1] R. Bott & H. Samelson, Applications of the theory of Morse to symmetric spaces, Amer. J. Math.80 (1958), 964–1029. Zbl0101.39702MR105694
- [2] N. Bourbaki, Éléments de mathématique. Algèbre. Chapitres 1 à 3, Hermann, 1970; réédition Springer, 2007.
- [3] N. Bourbaki, Éléments de mathématique. Algèbre commutative. Chapitres 1 à 4, Masson, 1985; réédition Springer, 2006. Zbl0547.13002MR782296
- [4] P. Bressler & S. Evens, The Schubert calculus, braid relations, and generalized cohomology, Trans. Amer. Math. Soc.317 (1990), 799–811. Zbl0685.55004MR968883
- [5] P. Bressler & S. Evens, Schubert calculus in complex cobordism, Trans. Amer. Math. Soc.331 (1992), 799–813. Zbl0757.57018MR1044959
- [6] B. Calmès & V. Petrov, Cohomology of Borel varieties, a Macaulay 2 package, http://www.math.uni-bielefeld.de/~bcalmes/M2packages/cohbovar.html, 2009.
- [7] M. Demazure, Invariants symétriques entiers des groupes de Weyl et torsion, Invent. Math.21 (1973), 287–301. Zbl0269.22010MR342522
- [8] M. Demazure, Désingularisation des variétés de Schubert généralisées, Ann. Sci. École Norm. Sup.7 (1974), 53–88. Zbl0312.14009MR354697
- [9] W. Fulton, Intersection theory, second éd., Ergebn. Math. Grenzg. 2, Springer, 1998. Zbl0885.14002MR1644323
- [10] D. R. Grayson & M. E. Stillman, Macaulay 2, a software system for research in algebraic geometry, http://www.math.uiuc.edu/Macaulay2/.
- [11] R. Hartshorne, Algebraic geometry, Grad. Texts in Math. 52, Springer, 1977. MR463157
- [12] M. J. Hopkins, N. J. Kuhn & D. C. Ravenel, Generalized group characters and complex oriented cohomology theories, J. Amer. Math. Soc.13 (2000), 553–594. Zbl1007.55004MR1758754
- [13] J. Hornbostel & V. Kiritchenko, Schubert calculus for algebraic cobordism, J. reine angew. Math. 656 (2011), 59–85. MR2818856
- [14] M. Levine & F. Morel, Algebraic cobordism, Springer Monographs in Math., Springer, 2007. Zbl1188.14015MR2286826
- [15] A. Merkurjev, Algebraic oriented cohomology theories, in Algebraic number theory and algebraic geometry, Contemp. Math. 300, Amer. Math. Soc., 2002, 171–193. Zbl1051.14021MR1936372
- [16] I. Panin, Oriented cohomology theories of algebraic varieties, -Theory 30 (2003), 265–314. MR2064242
- [17] I. Panin, Oriented cohomology theories of algebraic varieties. II (After I. Panin and A. Smirnov), Homology, Homotopy Appl. 11 (2009), 349–405. Zbl1169.14016MR2529164
- [18] A. Preygel, Algebraic cobordism of varieties with G-bundles, preprint arXiv:1007.0224.
- [19] T. A. Springer, Schubert varieties and generalizations, in Representation theories and algebraic geometry (Montreal, PQ, 1997), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 514, Kluwer Acad. Publ., 1998, 413–440. MR1653040
- [20] B. Totaro, The torsion index of and other groups, Duke Math. J.129 (2005), 219–248. Zbl1093.57011MR2165542
- [21] B. Totaro, The torsion index of the spin groups, Duke Math. J.129 (2005), 249–290. Zbl1094.57031MR2165543
- [22] A. Vishik, Symmetric operations in algebraic cobordism, Adv. Math.213 (2007), 489–552. Zbl1129.14034MR2332601
- [23] A. Vishik & N. Yagita, Algebraic cobordisms of a Pfister quadric, J. Lond. Math. Soc.76 (2007), 586–604. Zbl1143.14016MR2377113
- [24] M. Willems, Cohomologie équivariante des tours de Bott et calcul de Schubert équivariant, J. Inst. Math. Jussieu5 (2006), 125–159. MR2195948
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.