Tessellations of random maps of arbitrary genus

Grégory Miermont

Annales scientifiques de l'École Normale Supérieure (2009)

  • Volume: 42, Issue: 5, page 725-781
  • ISSN: 0012-9593

Abstract

top
We investigate Voronoi-like tessellations of bipartite quadrangulations on surfaces of arbitrary genus, by using a natural generalization of a bijection of Marcus and Schaeffer allowing one to encode such structures by labeled maps with a fixed number of faces. We investigate the scaling limits of the latter. Applications include asymptotic enumeration results for quadrangulations, and typical metric properties of randomly sampled quadrangulations. In particular, we show that scaling limits of these random quadrangulations are such that almost every pair of points is linked by a unique geodesic.

How to cite

top

Miermont, Grégory. "Tessellations of random maps of arbitrary genus." Annales scientifiques de l'École Normale Supérieure 42.5 (2009): 725-781. <http://eudml.org/doc/272240>.

@article{Miermont2009,
abstract = {We investigate Voronoi-like tessellations of bipartite quadrangulations on surfaces of arbitrary genus, by using a natural generalization of a bijection of Marcus and Schaeffer allowing one to encode such structures by labeled maps with a fixed number of faces. We investigate the scaling limits of the latter. Applications include asymptotic enumeration results for quadrangulations, and typical metric properties of randomly sampled quadrangulations. In particular, we show that scaling limits of these random quadrangulations are such that almost every pair of points is linked by a unique geodesic.},
author = {Miermont, Grégory},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {random maps; scaling limits; random snakes; asymptotic enumeration; geodesics},
language = {eng},
number = {5},
pages = {725-781},
publisher = {Société mathématique de France},
title = {Tessellations of random maps of arbitrary genus},
url = {http://eudml.org/doc/272240},
volume = {42},
year = {2009},
}

TY - JOUR
AU - Miermont, Grégory
TI - Tessellations of random maps of arbitrary genus
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2009
PB - Société mathématique de France
VL - 42
IS - 5
SP - 725
EP - 781
AB - We investigate Voronoi-like tessellations of bipartite quadrangulations on surfaces of arbitrary genus, by using a natural generalization of a bijection of Marcus and Schaeffer allowing one to encode such structures by labeled maps with a fixed number of faces. We investigate the scaling limits of the latter. Applications include asymptotic enumeration results for quadrangulations, and typical metric properties of randomly sampled quadrangulations. In particular, we show that scaling limits of these random quadrangulations are such that almost every pair of points is linked by a unique geodesic.
LA - eng
KW - random maps; scaling limits; random snakes; asymptotic enumeration; geodesics
UR - http://eudml.org/doc/272240
ER -

References

top
  1. [1] D. Aldous, The continuum random tree. I, Ann. Probab. 19 (1991), 1–28. Zbl0722.60013MR1085326
  2. [2] J. Ambjørn, B. Durhuus & T. Jonsson, Quantum geometry. A statistical field theory approach, Cambridge Monographs on Mathematical Physics, Cambridge Univ. Press, 1997. Zbl1096.82500
  3. [3] O. Angel, Growth and percolation on the uniform infinite planar triangulation, Geom. Funct. Anal.13 (2003), 935–974. Zbl1039.60085
  4. [4] E. A. Bender & E. R. Canfield, The asymptotic number of rooted maps on a surface, J. Combin. Theory43 (1986), 244–257. Zbl0606.05031
  5. [5] P. Billingsley, Convergence of probability measures, second éd., Probability and Statistics, John Wiley & Sons Inc., 1999. Zbl0172.21201
  6. [6] N. Bourbaki, Éléments de mathématique, Topologie générale, chap. 1 à 4, Hermann, 1971. Zbl0249.54001
  7. [7] J. Bouttier, P. Di Francesco & E. Guitter, Planar maps as labeled mobiles, Electron. J. Combin. 11 (2004), Research Paper 69 (electronic). Zbl1060.05045
  8. [8] J. Bouttier & E. Guitter, Statistics in geodesics in large quadrangulations, J. Phys. 41 (2008), 145001, 30. Zbl1183.82030
  9. [9] D. Burago, Y. Burago & S. Ivanov, A course in metric geometry, Graduate Studies in Math. 33, Amer. Math. Soc., 2001. Zbl0981.51016
  10. [10] G. Chapuy, M. Marcus & G. Schaeffer, A bijection for rooted maps on orientable surfaces, preprint arXiv:0712.3649, 2007. Zbl1207.05087
  11. [11] P. Chassaing & G. Schaeffer, Random planar lattices and integrated superBrownian excursion, Probab. Theory Related Fields128 (2004), 161–212. Zbl1041.60008
  12. [12] R. M. Dudley, Real analysis and probability, Cambridge Studies in Advanced Math. 74, Cambridge Univ. Press, 2002. Zbl1023.60001
  13. [13] T. Duquesne, A limit theorem for the contour process of conditioned Galton-Watson trees, Ann. Probab.31 (2003), 996–1027. Zbl1025.60017
  14. [14] T. Duquesne & J.-F. Le Gall, Random trees, Lévy processes and spatial branching processes, Astérisque 281 (2002). Zbl1037.60074
  15. [15] T. Duquesne & J.-F. Le Gall, Probabilistic and fractal aspects of Lévy trees, Probab. Theory Related Fields131 (2005), 553–603. Zbl1070.60076
  16. [16] S. N. Evans, J. Pitman & A. Winter, Rayleigh processes, real trees, and root growth with re-grafting, Probab. Theory Related Fields134 (2006), 81–126. Zbl1086.60050
  17. [17] S. N. Evans & A. Winter, Subtree prune and regraft: a reversible real tree-valued Markov process, Ann. Probab.34 (2006), 918–961. Zbl1101.60054
  18. [18] P. Flajolet & R. Sedgewick, Analytic combinatorics, Cambridge Univ. Press, 2009. Zbl1165.05001MR2483235
  19. [19] K. Fukaya, Collapsing of Riemannian manifolds and eigenvalues of Laplace operator, Invent. Math.87 (1987), 517–547. Zbl0589.58034MR874035
  20. [20] Z. Gao, A pattern for the asymptotic number of rooted maps on surfaces, J. Combin. Theory64 (1993), 246–264. Zbl0792.05073MR1245161
  21. [21] A. Greven, P. Pfaffelhuber & A. Winter, Convergence in distribution of random metric measure spaces( Λ -coalescent measure trees), preprint, 2006. Zbl1215.05161MR2520129
  22. [22] M. Gromov, Metric structures for Riemannian and non-Riemannian spaces, Progress in Math. 152, Birkhäuser, 1999. Zbl0953.53002MR1699320
  23. [23] S. Janson & J.-F. Marckert, Convergence of discrete snakes, J. Theoret. Probab.18 (2005), 615–647. Zbl1084.60049MR2167644
  24. [24] S. K. Lando & A. K. Zvonkin, Graphs on surfaces and their applications, Encyclopaedia of Math. Sciences 141, Springer, 2004. Zbl1040.05001MR2036721
  25. [25] J.-F. Le Gall, The uniform random tree in a Brownian excursion, Probab. Theory Related Fields96 (1993), 369–383. Zbl0794.60080MR1231930
  26. [26] J.-F. Le Gall, The topological structure of scaling limits of large planar maps, Invent. Math.169 (2007), 621–670. Zbl1132.60013MR2336042
  27. [27] J.-F. Le Gall, Geodesics in large planar maps and in the Brownian map, preprint arXiv:0804.3012, 2008. Zbl1214.53036MR2746349
  28. [28] J.-F. Le Gall & F. Paulin, Scaling limits of bipartite planar maps are homeomorphic to the 2-sphere, Geom. Funct. Anal.18 (2008), 893–918. Zbl1166.60006MR2438999
  29. [29] T. Lévy, Yang-Mills measure on compact surfaces, Mem. Amer. Math. Soc. 166 (2003). Zbl1036.58009MR2006374
  30. [30] J.-F. Marckert & G. Miermont, Invariance principles for random bipartite planar maps, Ann. Probab.35 (2007), 1642–1705. Zbl1208.05135MR2349571
  31. [31] J.-F. Marckert & A. Mokkadem, States spaces of the snake and its tour – convergence of the discrete snake, J. Theoret. Probab.16 (2003), 1015–1046. Zbl1044.60083MR2033196
  32. [32] J.-F. Marckert & A. Mokkadem, Limit of normalized quadrangulations: the Brownian map, Ann. Probab.34 (2006), 2144–2202. Zbl1117.60038MR2294979
  33. [33] M. Marcus & G. Schaeffer, Une bijection simple pour les cartes orientables, preprint http://www.lix.polytechnique.fr/~schaeffe/Biblio/MaSc01.ps, 2001. 
  34. [34] G. Miermont, An invariance principle for random planar maps, in Fourth Colloquium on Mathematics and Computer Sciences CMCS’06, Discrete Math. Theor. Comput. Sci. Proc., 2006, 39–58 (electronic). Zbl1195.60049MR2509622
  35. [35] G. Miermont, Invariance principles for spatial multitype Galton-Watson trees, Ann. Inst. Henri Poincaré Probab. Stat.44 (2008), 1128–1161. Zbl1178.60058MR2469338
  36. [36] G. Miermont & M. Weill, Radius and profile of random planar maps with faces of arbitrary degrees, Electron. J. Probab.13 (2008), 79–106. Zbl1190.60024MR2375600
  37. [37] A. Okounkov, Random matrices and random permutations, Int. Math. Res. Not.2000 (2000), 1043–1095. Zbl1018.15020MR1802530
  38. [38] A. Okounkov & R. Pandharipande, Gromov-Witten theory, Hurwitz numbers, and matrix models, in Algebraic geometry – Seattle 2005. Part 1, Proc. Sympos. Pure Math. 80, Amer. Math. Soc., 2009, 325–414. Zbl1205.14072MR2483941
  39. [39] V. V. Petrov, Sums of independent random variables, Springer, 1975. Zbl0322.60042MR388499
  40. [40] J. Pitman, Combinatorial stochastic processes, Lecture Notes in Math. 1875, Springer, 2006. Zbl1103.60004MR2245368
  41. [41] D. Revuz & M. Yor, Continuous martingales and Brownian motion, third éd., Grund. Math. Wiss. 293, Springer, 1999. Zbl0917.60006MR1725357
  42. [42] G. Schaeffer, Conjugaison d’arbres et cartes combinatoires aléatoires, Thèse de doctorat, Université Bordeaux I, 1998. 
  43. [43] S. Sheffield, Gaussian free fields for mathematicians, Probab. Theory Related Fields139 (2007), 521–541. Zbl1132.60072MR2322706
  44. [44] C. Villani, Optimal transport, Grund. Math. Wiss. 338, Springer, 2009. Zbl1156.53003MR2459454
  45. [45] M. Weill, Asymptotics for rooted bipartite planar maps and scaling limits of two-type spatial trees, Electron. J. Probab.12 (2007), 887–925. Zbl1127.05096MR2318414

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.