Taylorian points of an algebraic curve and bivariate Hermite interpolation
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2008)
- Volume: 7, Issue: 3, page 545-577
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topBos, Len, and Calvi, Jean-Paul. "Taylorian points of an algebraic curve and bivariate Hermite interpolation." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 7.3 (2008): 545-577. <http://eudml.org/doc/272253>.
@article{Bos2008,
abstract = {We introduce and study the notion of Taylorian points of algebraic curves in $\mathbb \{C\}^2$, which enables us to define intrinsic Taylor interpolation polynomials on curves. These polynomials in turn lead to the construction of a well-behaved Hermitian scheme on curves, of which we give several examples. We show that such Hermitian schemes can be collected to obtain Hermitian bivariate polynomial interpolation schemes.},
author = {Bos, Len, Calvi, Jean-Paul},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Tailorian points; algebraic curve; bivariate Hermite interpolation},
language = {eng},
number = {3},
pages = {545-577},
publisher = {Scuola Normale Superiore, Pisa},
title = {Taylorian points of an algebraic curve and bivariate Hermite interpolation},
url = {http://eudml.org/doc/272253},
volume = {7},
year = {2008},
}
TY - JOUR
AU - Bos, Len
AU - Calvi, Jean-Paul
TI - Taylorian points of an algebraic curve and bivariate Hermite interpolation
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2008
PB - Scuola Normale Superiore, Pisa
VL - 7
IS - 3
SP - 545
EP - 577
AB - We introduce and study the notion of Taylorian points of algebraic curves in $\mathbb {C}^2$, which enables us to define intrinsic Taylor interpolation polynomials on curves. These polynomials in turn lead to the construction of a well-behaved Hermitian scheme on curves, of which we give several examples. We show that such Hermitian schemes can be collected to obtain Hermitian bivariate polynomial interpolation schemes.
LA - eng
KW - Tailorian points; algebraic curve; bivariate Hermite interpolation
UR - http://eudml.org/doc/272253
ER -
References
top- [1] B. Bojanov and Y. Xu., On polynomial interpolation of two variables, J. Approx. Theory 120 (2003), 267–282. Zbl1029.41001MR1959868
- [2] B. D. Bojanov, H. A. Hakopian and A. A. Sahakian, “Spline Functions and Multivariate Interpolations”, Mathematics and its Applications, Vol. 248, Academic Publishers Group, Dordrecht, 1993. Zbl0772.41011MR1244800
- [3] L. Bos, On certain configurations of points in which are unisolvent for polynomial interpolation, J. Approx. Theory64 (1991), 271–280. Zbl0737.41002MR1094439
- [4] L. P. Bos and J.-P. Calvi, Multipoint taylor interpolation, Calcolo51 (2008), 35–51. Zbl1168.41301MR2400160
- [5] J.-P. Calvi and L. Filipsson, The polynomial projectors that preserve homogeneous differential relations: a new characterization of Kergin interpolation, East J. Approx.10 (2004), 441–454. Zbl1113.41002MR2101102
- [6] D. Cox, J. Little and D. O’Shea, “Ideals, Varieties, and Algorithms”, Undergraduate Texts in Mathematics, Springer, New York, third edition, 2007. Zbl1118.13001MR2290010
- [7] C. de Boor and A. Ron, On multivariate polynomial interpolation, Constr. Approx.6 (1990), 287–302. Zbl0719.41006MR1054756
- [8] C. de Boor and A. Ron, The least solution for the polynomial interpolation problem, Math. Z.210 (1992), 347–378. Zbl0735.41001MR1171179
- [9] Lars Filipsson, Complex mean-value interpolation and approximation of holomorphic functions, J. Approx. Theory91 (1997), 244–278. Zbl0904.32012MR1484043
- [10] M. Gasca and T. Sauer, Polynomial interpolation in several variables, Adv. Comput. Math. 12 (2000), 377–410. Multivariate polynomial interpolation. Zbl0943.41001MR1768957
- [11] H. A. Hakopian and M. F. Khalaf, On the poisedness of Bojanov-Xu interpolation, J. Approx. Theory135 (2005), 176–202. Zbl1076.41002MR2158529
- [12] H. A. Hakopian and M. F. Khalaf, On the poisedness of Bojanov-Xu interpolation, II, East J. Approx.11 (2005), 187–220. Zbl1247.46025MR2151615
- [13] F. Kirwan, “Complex Algebraic Curves”, London Mathematical Society Student Texts, Vol. 23, Cambridge University Press, Cambridge, 1992. Zbl0744.14018MR1159092
- [14] R. A. Lorentz, “Multivariate Birkhoff Interpolation”, Lecture Notes in Mathematics, Vol. 1516. ix, Springer-Verlag, 1992. Zbl0760.41002MR1222648
- [15] R. A. Lorentz, Multivariate Hermite interpolation by algebraic polynomials: A survey, J. Comput. Appl. Math.122 (2000), 167–201. Zbl0967.65008MR1794655
- [16] M. G. Marinari, H. M. Möller and T. Mora, Gröbner bases of ideals defined by functionals with an application to ideals of projective points, Appl. Algebra Engrg. Comm. Comput.4 (1993), 103–145. Zbl0785.13009MR1223853
- [17] H. M. Möller, Hermite interpolation in several variables using ideal-theoretic methods, In: “Constructive Theory of Functions of Several Variables”, Proc. Conf., Math. Res. Inst., Oberwolfach, 1976, Lecture Notes in Math., Vol. 571, Springer, Berlin, 1977, 155–163. Zbl0347.41002MR493046
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.