Singularities of Maxwell’s system in non-hilbertian Sobolev spaces
Wided Chikouche; Serge Nicaise
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2008)
- Volume: 7, Issue: 3, page 455-482
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topChikouche, Wided, and Nicaise, Serge. "Singularities of Maxwell’s system in non-hilbertian Sobolev spaces." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 7.3 (2008): 455-482. <http://eudml.org/doc/272260>.
@article{Chikouche2008,
abstract = {We study the regularity of the solution of the regularized electric Maxwell problem in a polygonal domain with data in $L^p(\Omega )^2$. Using a duality method, we prove a decomposition of the solution into a regular part in the non-Hilbertian Sobolev space $W^\{2,p\}(\Omega )^2$ and an explicit singular one.},
author = {Chikouche, Wided, Nicaise, Serge},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {two-dimensional Maxwell system; singularities in corners; polygonal domains},
language = {eng},
number = {3},
pages = {455-482},
publisher = {Scuola Normale Superiore, Pisa},
title = {Singularities of Maxwell’s system in non-hilbertian Sobolev spaces},
url = {http://eudml.org/doc/272260},
volume = {7},
year = {2008},
}
TY - JOUR
AU - Chikouche, Wided
AU - Nicaise, Serge
TI - Singularities of Maxwell’s system in non-hilbertian Sobolev spaces
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2008
PB - Scuola Normale Superiore, Pisa
VL - 7
IS - 3
SP - 455
EP - 482
AB - We study the regularity of the solution of the regularized electric Maxwell problem in a polygonal domain with data in $L^p(\Omega )^2$. Using a duality method, we prove a decomposition of the solution into a regular part in the non-Hilbertian Sobolev space $W^{2,p}(\Omega )^2$ and an explicit singular one.
LA - eng
KW - two-dimensional Maxwell system; singularities in corners; polygonal domains
UR - http://eudml.org/doc/272260
ER -
References
top- [1] S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general conditions II, Comm. Pure Appl. Math.17 (1964), 35–92. Zbl0123.28706MR162050
- [2] A. Aibeche, W. Chikouche and S. Nicaise, regularity of transmission problems in dihedral domains, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 10-B (2007), 663–660. Zbl1178.47005MR2351535
- [3] C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional nonsmooth domains, Math. Methods Appl. Sci.21 (1998), 823–864. Zbl0914.35094MR1626990
- [4] T. Apel and S. Nicaise, The finite element method with anisotropic mesh grading for elliptic problems in domains with corners and edges, Math. Methods Appl. Sci.21 (1998), 519–549. Zbl0911.65107MR1615426
- [5] F. Assous and P. Ciarlet, Une caractérisation de l’orthogonal de dans , C. R. Acad. Sc. Paris, Série I 325 (1997), 605–610. Zbl0892.35043MR1473832
- [6] F. Assous, P. Ciarlet Jr. and E. Sonnendrücker, Résolution of the Maxwell equations in a domain with reentrant corners, RAIRO Modél. Math. Anal. Numér.32 (1998), 359–389. Zbl0924.65111MR1627135
- [7] M. Birman and M. Z. Solomyak, theory of the Maxwell operator in arbitrary domains, Russian Math. Surveys42 (1987), 75–96. Zbl0653.35075MR933995
- [8] M. S. Birman and M. Z. Solomyak, On the main singularities of the electric component of the electro-magnetic field in regions with screens, St. Petersburg Math. J.5 (1993), 125–139. Zbl0804.35127MR1220492
- [9] P. Clément and P. Grisvard, Somme d’opérateurs et régularité dans les problèmes aux limites, C. R. Acad. Sci. Paris Série I, 314 (1992), 821-824. Zbl0773.47033MR1166054
- [10] M. CostabelA remark on the regularity of solutions of Maxwell’s equations on Lipschitz domains, Math. Methods Appl. Sci.12 (1990), 365–368. Zbl0699.35028MR1048563
- [11] M. Costabel and M. Dauge, Singularities of electromagnetic fields in polyhedral domains Arch. Ration. Mech. Anal.151 (2000), 221–276. Zbl0968.35113MR1753704
- [12] G. Da Prato and P. Grisvard, Somme d’opérateurs linéaires et équations différentielles opérationnelles, J. Math. Pures Appl., Ser. IX, 54 (1975), 305–387. Zbl0315.47009MR442749
- [13] G. Dore and A. Venni, On the closedness of the sum of two closed operators, Math. Z.196 (1987), 189–201. Zbl0615.47002MR910825
- [14] V. Giraultand and P.-A. Raviart, “Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms”, Vol. 5, Springer Series in Computational Mathematics, Springer, Berlin, 1986. Zbl0585.65077
- [15] P. Grisvard, “Elliptic Problems in Nonsmooth Domains”, Vol. 24, Monographs and Studies in Mathematics, Pitman, Boston–London–Melbourne, 1985. Zbl0695.35060MR775683
- [16] M. D. Gunzburger, A. J. Meir and J. S. Peterson, On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary,incompressible magnetohydrodynamics, Math. Comp.56 (1991), 523–563. Zbl0731.76094MR1066834
- [17] V. G. Maz’ya and B. A. Plamenevskii, Estimates in and in Hölder classes and the Miranda-Agmon maximum principle for solutions of elliptic boundary value problems in domains with singular points on the boundary, Amer. Math. Soc. Transl. Ser. 2, 123 (1984), 1–56. Zbl0554.35035
- [18] M. MoussaouiEspace dans un polygone plan, C. R. Acad. Sc. Paris, Série I, 322 (1996), 225–229. Zbl0852.46034
- [19] S. Nicaise, “ Polygonal Interface Problems”, Vol. 39, Methoden und Verfahren der mathematischen Physik, Peter Lang GmbH, Europäischer Verlag der Wissenschaften, Frankfurt/M., 1993. Zbl0794.35040MR1236228
- [20] S. Nicaise, Edge elements on anisotropic meshes and approximation of the Maxwell equations, SIAM J. Numer. Anal. 39 (2001), 784–816(electronic). Zbl1001.65122MR1860445
- [21] C. WeberA local compactness theorem for Maxwell’s equations, Math. Methods Appl. Sci.2 (1980), 12–25. Zbl0432.35032MR561375
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.