Combinatorial mapping-torus, branched surfaces and free group automorphisms

François Gautero

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2007)

  • Volume: 6, Issue: 3, page 405-440
  • ISSN: 0391-173X

Abstract

top
We give a characterization of the geometric automorphisms in a certain class of (not necessarily irreducible) free group automorphisms. When the automorphism is geometric, then it is induced by a pseudo-Anosov homeomorphism without interior singularities. An outer free group automorphism is given by a 1 -cocycle of a 2 -complex (a standard dynamical branched surface, see [7] and [9]) the fundamental group of which is the mapping-torus group of the automorphism. A combinatorial construction elucidates the link between this new representation (first introduced in [16]) and the classical representation of a free group automorphism by a graph-map [2].

How to cite

top

Gautero, François. "Combinatorial mapping-torus, branched surfaces and free group automorphisms." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 6.3 (2007): 405-440. <http://eudml.org/doc/272278>.

@article{Gautero2007,
abstract = {We give a characterization of the geometric automorphisms in a certain class of (not necessarily irreducible) free group automorphisms. When the automorphism is geometric, then it is induced by a pseudo-Anosov homeomorphism without interior singularities. An outer free group automorphism is given by a $1$-cocycle of a $2$-complex (a standard dynamical branched surface, see [7] and [9]) the fundamental group of which is the mapping-torus group of the automorphism. A combinatorial construction elucidates the link between this new representation (first introduced in [16]) and the classical representation of a free group automorphism by a graph-map [2].},
author = {Gautero, François},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {geometric automorphisms; free group automorphisms; pseudo-Anosov homeomorphisms; outer automorphisms; dynamical branched surfaces; fundamental groups; mapping-torus groups},
language = {eng},
number = {3},
pages = {405-440},
publisher = {Scuola Normale Superiore, Pisa},
title = {Combinatorial mapping-torus, branched surfaces and free group automorphisms},
url = {http://eudml.org/doc/272278},
volume = {6},
year = {2007},
}

TY - JOUR
AU - Gautero, François
TI - Combinatorial mapping-torus, branched surfaces and free group automorphisms
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2007
PB - Scuola Normale Superiore, Pisa
VL - 6
IS - 3
SP - 405
EP - 440
AB - We give a characterization of the geometric automorphisms in a certain class of (not necessarily irreducible) free group automorphisms. When the automorphism is geometric, then it is induced by a pseudo-Anosov homeomorphism without interior singularities. An outer free group automorphism is given by a $1$-cocycle of a $2$-complex (a standard dynamical branched surface, see [7] and [9]) the fundamental group of which is the mapping-torus group of the automorphism. A combinatorial construction elucidates the link between this new representation (first introduced in [16]) and the classical representation of a free group automorphism by a graph-map [2].
LA - eng
KW - geometric automorphisms; free group automorphisms; pseudo-Anosov homeomorphisms; outer automorphisms; dynamical branched surfaces; fundamental groups; mapping-torus groups
UR - http://eudml.org/doc/272278
ER -

References

top
  1. [1] M. Bestvina, M. Feighn and M. Handel, The Tits alternative for Out ( F n ) : Dynamics of exponentially growing free group automorphisms, Ann. of Math.151 (2000), 517–623. Zbl0984.20025MR1765705
  2. [2] M. Bestvina and M. Handel, Train-tracks and free group-automorphisms, Ann. of Math.135 (1992), 1–52. Zbl0757.57004MR1147956
  3. [3] M. Bestvina and M. Handel, Train-tracks for surface homeomorphisms, Topology34 (1995), 109–140. Zbl0837.57010MR1308491
  4. [4] R. Benedetti and C. Petronio, A finite graphic calculus for 3 -manifolds, Manuscripta Math.88 (1995), 291–310. Zbl0856.57009MR1359699
  5. [5] R. Benedetti and C. Petronio, “Branched Standard Spines of 3 -Manifolds", Lectures Notes in Mathematics, 1653, Springer, Berlin, 1997. Zbl0873.57002MR1470454
  6. [6] N. Brady and J. Crisp, CAT ( 0 ) and CAT ( - 1 ) dimensions of torsion free hyperbolic groups, to appear in Comment. Math. Helv. Zbl1145.20023MR2296058
  7. [7] B. G. Casler, An imbedding theorem for connected 3 -manifolds with boundary, Proc. Amer. Math. Soc.16 (1965), 559–566. Zbl0129.15801MR178473
  8. [8] A. J. Casson and S. A. Bleiler“Automorphisms of Surfaces After Nielsen and Thurston", London Mathematical Society Student Texts 9, Cambridge University Press, Cambridge, 1988. Zbl0649.57008MR964685
  9. [9] J. Christy, Branched surfaces and attractors I: Dynamic branched surfaces, Trans. Amer. Math. Soc.336 (1993), 759–784. Zbl0777.58024MR1148043
  10. [10] H. D. Coldewey, E. Vogt and H. Zieschang, “Surfaces and Planar Discontinuous Groups", Lecture Notes in Mathematics 835, Springer-Verlag, 1980. Zbl0438.57001MR606743
  11. [11] D. J. Collins and H. Zieschang, Combinatorial group theory and fundamental groups, In: “Algebra VII”, Encyclopaedia Math. Sci., Vol. 58, Springer, Berlin, 1993, 1–166. Zbl0781.20020MR1265270
  12. [12] W. Dicks and E. Ventura, Irreducible automorphisms of growth rate one, J. Pure Appl. Algebra88 (1993), 51–62. Zbl0787.20023MR1233313
  13. [13] A. Fathi, F. Laudenbach and V. Poenaru, “Travaux de Thurston sur les Surfaces", Astérique 66-67, 1979. Zbl0446.57010
  14. [14] J. Fehrenbach, “Quelques Aspects Géométriques et Dynamiques du Mapping-Class Group”, PhD dissertation, Université de Nice, Sophia Antipolis, 1998. 
  15. [15] D. Gaboriau, A. Jaeger, G. Levitt and M. Lustig, An index for counting fixed points of automorphisms of free groups, Duke Math. J.93 (1998), 425–452. Zbl0946.20010MR1626723
  16. [16] F. Gautero, Dynamical 2 -complexes, Geom. Dedicata88 (2001), 283–319. Zbl1001.57006MR1877221
  17. [17] F. Gautero, Cross-sections to semi-flows on 2 -complexes, Ergod. Theory Dyn. Syst.23 (2003), 143–174. Zbl1140.37311MR1971200
  18. [18] S. Gersten, Geometric automorphisms of a free group of rank at least three are rare, Proc. Amer. Math. Soc.89 (1983), 27–31. Zbl0525.20022MR706503
  19. [19] V. Guirardel, Core and intersection number for group action on trees, Ann. Sci. Ecole Norm. Sup.38 (2005), 847–888. Zbl1110.20019MR2216833
  20. [20] M. Handel and L. Mosher, Parageometric outer automorphisms of free groups, Trans. Amer. Math. Soc.359 (2007), 3153–3183. Zbl1120.20042MR2299450
  21. [21] J. Los, On the conjugacy problem for automorphisms of free groups, With an addendum by the author, Topology 35 (1996), 779–808. Zbl0858.20022MR1396778
  22. [22] J. Los and M. Lustig, The set of train-track representatives of an irreducible free group automorphisms is contractible, http://www.crm.es/Publications/Preprints04.htm (2004). 
  23. [23] J. Los and Z. Nitecki, Edge-transitive graph automorphisms and periodic surface homeomorphisms, Internat. J. Bifur. Chaos Appl. Sci. Engrg.9 (1999), 1803–1813. Zbl1089.37522MR1728740
  24. [24] M. Lustig, Structure and conjugacy for automorphisms of free groups I, II, Max-Planck-Institut für Mathematik, Preprint Series 130 (2000) and 4 (2001). 
  25. [25] S. V. Matveev, Special spines of piecewise linear manifolds, Math. USSR Sb. 21 (1973). Zbl0289.57008
  26. [26] R. Penner and J. Harer, “Combinatorics of Train-Tracks", Annals of Mathematical Studies 125, Princeton University Press, 1991. Zbl0765.57001MR1144770
  27. [27] J. R. Stallings, Topologically unrealizable automorphisms of free groups, Proc. Amer. Math. Soc.84 (1982), 21–24. Zbl0477.20012MR633269
  28. [28] J. R. Stallings, Topology of finite graphs, Invent. Math.71 (1983), 551–565. Zbl0521.20013MR695906
  29. [29] R. F. Williams, Expanding attractors, Inst. Hautes Étud. Sci. Publ. Math. 43 (1974), 169–203. Zbl0279.58013MR348794

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.