Persistence of Coron’s solution in nearly critical problems
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2007)
- Volume: 6, Issue: 2, page 331-357
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topMusso, Monica, and Pistoia, Angela. "Persistence of Coron’s solution in nearly critical problems." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 6.2 (2007): 331-357. <http://eudml.org/doc/272293>.
@article{Musso2007,
abstract = {We consider the problem\[\{\left\lbrace \begin\{array\}\{ll\}-\Delta u= u^\{\{N+2\over N-2\}+\lambda \} & \text\{in \}\Omega \setminus \varepsilon \omega , \\ u>0 & \text\{in \}\Omega \setminus \varepsilon \omega ,\\ u=0 & \text\{on \} \partial \left( \Omega \setminus \varepsilon \omega \right) ,\end\{array\}\right.\}\]where $\Omega $ and $\omega $ are smooth bounded domains in $\mathbb \{R\}^N$, $N\ge 3$, $\varepsilon >0$ and $\lambda \in \mathbb \{R\}.$ We prove that if the size of the hole $\varepsilon $ goes to zero and if, simultaneously, the parameter $\lambda $ goes to zero at the appropriate rate, then the problem has a solution which blows up at the origin.},
author = {Musso, Monica, Pistoia, Angela},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {nonlinear elliptic equations; Dirichlet condition; Coron's solution},
language = {eng},
number = {2},
pages = {331-357},
publisher = {Scuola Normale Superiore, Pisa},
title = {Persistence of Coron’s solution in nearly critical problems},
url = {http://eudml.org/doc/272293},
volume = {6},
year = {2007},
}
TY - JOUR
AU - Musso, Monica
AU - Pistoia, Angela
TI - Persistence of Coron’s solution in nearly critical problems
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2007
PB - Scuola Normale Superiore, Pisa
VL - 6
IS - 2
SP - 331
EP - 357
AB - We consider the problem\[{\left\lbrace \begin{array}{ll}-\Delta u= u^{{N+2\over N-2}+\lambda } & \text{in }\Omega \setminus \varepsilon \omega , \\ u>0 & \text{in }\Omega \setminus \varepsilon \omega ,\\ u=0 & \text{on } \partial \left( \Omega \setminus \varepsilon \omega \right) ,\end{array}\right.}\]where $\Omega $ and $\omega $ are smooth bounded domains in $\mathbb {R}^N$, $N\ge 3$, $\varepsilon >0$ and $\lambda \in \mathbb {R}.$ We prove that if the size of the hole $\varepsilon $ goes to zero and if, simultaneously, the parameter $\lambda $ goes to zero at the appropriate rate, then the problem has a solution which blows up at the origin.
LA - eng
KW - nonlinear elliptic equations; Dirichlet condition; Coron's solution
UR - http://eudml.org/doc/272293
ER -
References
top- [1] T. Aubin, Problemes isoperimetriques et espaces de Sobolev, J. Differential Geom.11 (1976), 573–598. Zbl0371.46011MR448404
- [2] A. Bahri, “Critical Points at Infinity in Some Variational Problems”, Pitman Research Notes in Mathematics Series, Vol. 182, 1989, Longman. Zbl0676.58021MR1019828
- [3] A. Bahri and J.M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math.41 (1988), 253–294. Zbl0649.35033MR929280
- [4] A. Bahri and Y. Li, O. Rey, On a variational problem with lack of compactness: the topological effect of the critical points at infinity, Calc. Var. Partial Differential Equations 3 (1995), 67–93. Zbl0814.35032MR1384837
- [5] M. Ben Ayed, K. El Mehdi, M. Grossi and O. Rey, A nonexistence result of single peaked solutions to a supercritical nonlinear problem, Commun. Contemp. Math.5 (2003), 179–195. Zbl1066.35035MR1966257
- [6] G. Bianchi and H. Egnell, A note on the Sobolev inequality, J. Funct. Anal.100 (1991), 18–24. Zbl0755.46014MR1124290
- [7] L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behaviour of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math.42 (1989), 271–297. Zbl0702.35085MR982351
- [8] J. M. Coron, Topologie et cas limite des injections de Sobolev, C. R. Acad. Sci. Paris Sér. I Math.299 (1984), 209–212. Zbl0569.35032MR762722
- [9] E. N. Dancer, A note on an equation with critical exponent, Bull. London Math. Soc.20 (1988), 600–602. Zbl0646.35027MR980763
- [10] E. N. Dancer, Domain variation for certain sets of solutions and applications, Topol. Methods Nonlin. Anal.7 (1996), 95–113. Zbl0941.35030MR1422007
- [11] E. N. Dancer, Superlinear problems on domains with holes of asymptotic shape and exterior problems, Math. Z.229 (1998), 475–491. Zbl0933.35068MR1658565
- [12] M. del Pino, P. Felmer and M. Musso, Two-bubble solutions in the super-critical Bahri-Coron’s problem, Calc. Var. Partial Differential Equations16 (2003), 113–145. Zbl1142.35421MR1956850
- [13] M. del Pino, P. Felmer and M. Musso, Multi-peak solutions for super-critical elliptic problems in domains with small holes, J. Differential Equations182 (2002), 511–540. Zbl1014.35028MR1900333
- [14] M. del Pino, P. Felmer and M. Musso, Multi-bubble solutions for Slightly super-critial ellitpic problems in domains with symmetries, Bull. London Math. Soc.35 (2003), 513–521. Zbl1109.35334MR1979006
- [15] Z. C. Han, Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire8 (1991), 159–174. Zbl0729.35014MR1096602
- [16] J. Kazdan and F. W. Warner, Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math.28 (1975), 567–597. Zbl0325.35038MR477445
- [17] S. Khenissy and O. Rey, A criterion for existence of solutions to the supercritical Bahri-Coron’s problem, Houston J. Math.30 (2004), 587–613. Zbl1172.35390MR2084920
- [18] R. Lewandowski, Little holes and convergence of solutions of , Nonlinear Anal.14 (1990), 873–888. Zbl0713.35008MR1055535
- [19] G. Li, S. Yan and J. Yang, An elliptic problem with critical growth in domains with shrinking holes, J. Differential Equations198 (2004), 275–300. Zbl1086.35046MR2038582
- [20] R. Molle and D. Passaseo, Positive solutions for slightly super-critical elliptic equations in contractible domains, C. R. Math. Acad. Sci. Paris335 (2002), 459–462. Zbl1010.35043MR1937113
- [21] A. Pistoia and O. Rey, Multiplicity of solutions to the supercritical Bahri-Coron’s problem in pierced domains, Adv. Differential Equations11 (2006), 647–666. Zbl1166.35333MR2238023
- [22] S. I. Pohožaev, On the eigenfunctions of the equation , (Russian) Dokl. Akad. Nauk 165 (1965), 36–39. Zbl0141.30202
- [23] O. Rey, Proof of two conjectures of H. Brezis and L.A. Peletier, Manuscripta Math.65 (1989), 19–37. Zbl0708.35032MR1006624
- [24] O. Rey, Sur un probléme variationnel non compact: l’effect de petits trous dans le domain, C.R. Acad. Sci. Paris308 (1989), 349–352. Zbl0686.35047MR992090
- [25] O. Rey, Blow-up points of solutions to elliptic equations with limiting nonlinearity, Differential Integral Equations4 (1991), 1155–1167. Zbl0830.35043MR1133750
- [26] G. Talenti, Best constants in Sobolev inequality, Ann. Mat. Pura Appl.110 (1976), 353–372. Zbl0353.46018MR463908
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.