Persistence of Coron’s solution in nearly critical problems

Monica Musso; Angela Pistoia

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2007)

  • Volume: 6, Issue: 2, page 331-357
  • ISSN: 0391-173X

Abstract

top
We consider the problem - Δ u = u N + 2 N - 2 + λ in Ω ε ω , u > 0 in Ω ε ω , u = 0 on Ω ε ω , where Ω and ω are smooth bounded domains in N , N 3 , ε > 0 and λ . We prove that if the size of the hole ε goes to zero and if, simultaneously, the parameter λ goes to zero at the appropriate rate, then the problem has a solution which blows up at the origin.

How to cite

top

Musso, Monica, and Pistoia, Angela. "Persistence of Coron’s solution in nearly critical problems." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 6.2 (2007): 331-357. <http://eudml.org/doc/272293>.

@article{Musso2007,
abstract = {We consider the problem\[\{\left\lbrace \begin\{array\}\{ll\}-\Delta u= u^\{\{N+2\over N-2\}+\lambda \} & \text\{in \}\Omega \setminus \varepsilon \omega , \\ u&gt;0 & \text\{in \}\Omega \setminus \varepsilon \omega ,\\ u=0 & \text\{on \} \partial \left( \Omega \setminus \varepsilon \omega \right) ,\end\{array\}\right.\}\]where $\Omega $ and $\omega $ are smooth bounded domains in $\mathbb \{R\}^N$, $N\ge 3$, $\varepsilon &gt;0$ and $\lambda \in \mathbb \{R\}.$ We prove that if the size of the hole $\varepsilon $ goes to zero and if, simultaneously, the parameter $\lambda $ goes to zero at the appropriate rate, then the problem has a solution which blows up at the origin.},
author = {Musso, Monica, Pistoia, Angela},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {nonlinear elliptic equations; Dirichlet condition; Coron's solution},
language = {eng},
number = {2},
pages = {331-357},
publisher = {Scuola Normale Superiore, Pisa},
title = {Persistence of Coron’s solution in nearly critical problems},
url = {http://eudml.org/doc/272293},
volume = {6},
year = {2007},
}

TY - JOUR
AU - Musso, Monica
AU - Pistoia, Angela
TI - Persistence of Coron’s solution in nearly critical problems
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2007
PB - Scuola Normale Superiore, Pisa
VL - 6
IS - 2
SP - 331
EP - 357
AB - We consider the problem\[{\left\lbrace \begin{array}{ll}-\Delta u= u^{{N+2\over N-2}+\lambda } & \text{in }\Omega \setminus \varepsilon \omega , \\ u&gt;0 & \text{in }\Omega \setminus \varepsilon \omega ,\\ u=0 & \text{on } \partial \left( \Omega \setminus \varepsilon \omega \right) ,\end{array}\right.}\]where $\Omega $ and $\omega $ are smooth bounded domains in $\mathbb {R}^N$, $N\ge 3$, $\varepsilon &gt;0$ and $\lambda \in \mathbb {R}.$ We prove that if the size of the hole $\varepsilon $ goes to zero and if, simultaneously, the parameter $\lambda $ goes to zero at the appropriate rate, then the problem has a solution which blows up at the origin.
LA - eng
KW - nonlinear elliptic equations; Dirichlet condition; Coron's solution
UR - http://eudml.org/doc/272293
ER -

References

top
  1. [1] T. Aubin, Problemes isoperimetriques et espaces de Sobolev, J. Differential Geom.11 (1976), 573–598. Zbl0371.46011MR448404
  2. [2] A. Bahri, “Critical Points at Infinity in Some Variational Problems”, Pitman Research Notes in Mathematics Series, Vol. 182, 1989, Longman. Zbl0676.58021MR1019828
  3. [3] A. Bahri and J.M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math.41 (1988), 253–294. Zbl0649.35033MR929280
  4. [4] A. Bahri and Y. Li, O. Rey, On a variational problem with lack of compactness: the topological effect of the critical points at infinity, Calc. Var. Partial Differential Equations 3 (1995), 67–93. Zbl0814.35032MR1384837
  5. [5] M. Ben Ayed, K. El Mehdi, M. Grossi and O. Rey, A nonexistence result of single peaked solutions to a supercritical nonlinear problem, Commun. Contemp. Math.5 (2003), 179–195. Zbl1066.35035MR1966257
  6. [6] G. Bianchi and H. Egnell, A note on the Sobolev inequality, J. Funct. Anal.100 (1991), 18–24. Zbl0755.46014MR1124290
  7. [7] L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behaviour of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math.42 (1989), 271–297. Zbl0702.35085MR982351
  8. [8] J. M. Coron, Topologie et cas limite des injections de Sobolev, C. R. Acad. Sci. Paris Sér. I Math.299 (1984), 209–212. Zbl0569.35032MR762722
  9. [9] E. N. Dancer, A note on an equation with critical exponent, Bull. London Math. Soc.20 (1988), 600–602. Zbl0646.35027MR980763
  10. [10] E. N. Dancer, Domain variation for certain sets of solutions and applications, Topol. Methods Nonlin. Anal.7 (1996), 95–113. Zbl0941.35030MR1422007
  11. [11] E. N. Dancer, Superlinear problems on domains with holes of asymptotic shape and exterior problems, Math. Z.229 (1998), 475–491. Zbl0933.35068MR1658565
  12. [12] M. del Pino, P. Felmer and M. Musso, Two-bubble solutions in the super-critical Bahri-Coron’s problem, Calc. Var. Partial Differential Equations16 (2003), 113–145. Zbl1142.35421MR1956850
  13. [13] M. del Pino, P. Felmer and M. Musso, Multi-peak solutions for super-critical elliptic problems in domains with small holes, J. Differential Equations182 (2002), 511–540. Zbl1014.35028MR1900333
  14. [14] M. del Pino, P. Felmer and M. Musso, Multi-bubble solutions for Slightly super-critial ellitpic problems in domains with symmetries, Bull. London Math. Soc.35 (2003), 513–521. Zbl1109.35334MR1979006
  15. [15] Z. C. Han, Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire8 (1991), 159–174. Zbl0729.35014MR1096602
  16. [16] J. Kazdan and F. W. Warner, Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math.28 (1975), 567–597. Zbl0325.35038MR477445
  17. [17] S. Khenissy and O. Rey, A criterion for existence of solutions to the supercritical Bahri-Coron’s problem, Houston J. Math.30 (2004), 587–613. Zbl1172.35390MR2084920
  18. [18] R. Lewandowski, Little holes and convergence of solutions of - Δ u = u ( N + 2 ) / ( N - 2 ) , Nonlinear Anal.14 (1990), 873–888. Zbl0713.35008MR1055535
  19. [19] G. Li, S. Yan and J. Yang, An elliptic problem with critical growth in domains with shrinking holes, J. Differential Equations198 (2004), 275–300. Zbl1086.35046MR2038582
  20. [20] R. Molle and D. Passaseo, Positive solutions for slightly super-critical elliptic equations in contractible domains, C. R. Math. Acad. Sci. Paris335 (2002), 459–462. Zbl1010.35043MR1937113
  21. [21] A. Pistoia and O. Rey, Multiplicity of solutions to the supercritical Bahri-Coron’s problem in pierced domains, Adv. Differential Equations11 (2006), 647–666. Zbl1166.35333MR2238023
  22. [22] S. I. Pohožaev, On the eigenfunctions of the equation Δ u + λ f ( u ) = 0 , (Russian) Dokl. Akad. Nauk 165 (1965), 36–39. Zbl0141.30202
  23. [23] O. Rey, Proof of two conjectures of H. Brezis and L.A. Peletier, Manuscripta Math.65 (1989), 19–37. Zbl0708.35032MR1006624
  24. [24] O. Rey, Sur un probléme variationnel non compact: l’effect de petits trous dans le domain, C.R. Acad. Sci. Paris308 (1989), 349–352. Zbl0686.35047MR992090
  25. [25] O. Rey, Blow-up points of solutions to elliptic equations with limiting nonlinearity, Differential Integral Equations4 (1991), 1155–1167. Zbl0830.35043MR1133750
  26. [26] G. Talenti, Best constants in Sobolev inequality, Ann. Mat. Pura Appl.110 (1976), 353–372. Zbl0353.46018MR463908

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.