Sharp estimates for bubbling solutions of a fourth order mean field equation

Chang-Shou Lin; Juncheng Wei

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2007)

  • Volume: 6, Issue: 4, page 599-630
  • ISSN: 0391-173X

Abstract

top
We consider a sequence of multi-bubble solutions u k of the following fourth order equation Δ 2 u k = ρ k h ( x ) e u k Ω h e u k in Ω , u k = Δ u k = 0 on Ω , ( * ) where h is a C 2 , β positive function, Ω is a bounded and smooth domain in 4 , and ρ k is a constant such that ρ k C . We show that (after extracting a subsequence), lim k + ρ k = 32 σ 3 m for some positive integer m 1 , where σ 3 is the area of the unit sphere in 4 . Furthermore, we obtain the following sharp estimates for  ρ k : ρ k - 32 σ 3 m = c 0 j = 1 m ϵ k , j 2 l j Δ G 4 ( p j , p l ) + Δ R 4 ( p j , p j ) + 1 32 σ 3 Δ log h ( p j ) + o j = 1 m ϵ k , j 2 where c 0 > 0 , log 64 ϵ k , j 4 = max x B δ ( p j ) u k ( x ) - log ( Ω h e u k ) and u k 32 σ 3 j = 1 m G 4 ( · , p j ) in C loc 4 ( Ω { p 1 , ... , p m } ) . This yields a bound of solutions as ρ k converges to 32 σ 3 m from below provided that j = 1 m l j Δ G 4 ( p j , p l ) + Δ R 4 ( p j , p j ) + 1 32 σ 3 Δ log h ( p j ) > 0 . The analytic work of this paper is the first step toward computing the Leray-Schauder degree of solutions of equation ( * ) .

How to cite

top

Lin, Chang-Shou, and Wei, Juncheng. "Sharp estimates for bubbling solutions of a fourth order mean field equation." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 6.4 (2007): 599-630. <http://eudml.org/doc/272296>.

@article{Lin2007,
abstract = {We consider a sequence of multi-bubble solutions $ u_k$ of the following fourth order equation\[\qquad \qquad \! \Delta ^2 u\_k = \rho \_k \frac\{ h(x) e^\{u\_k\}\}\{ \int \_\Omega h e^\{u\_k\}\} \ \ \mbox\{in\} \ \Omega , \ \ u\_k=\Delta u\_k=0 \ \ \mbox\{on\} \ \partial \Omega ,\qquad \qquad \qquad (*)\]where $h$ is a $C^\{2, \beta \}$ positive function, $\Omega $ is a bounded and smooth domain in $\mathbb \{R\}^4$, and $\rho _k$ is a constant such that $ \rho _k\! \le \! C$. We show that (after extracting a subsequence), $\lim _\{ k\rightarrow +\infty \} \rho _k \!=\! 32 \sigma _3 m $ for some positive integer $m\! \ge \! 1$, where $\sigma _3$ is the area of the unit sphere in $\mathbb \{R\}^4$. Furthermore, we obtain the following sharp estimates for $\rho _k$:\[ \begin\{aligned\} \rho \_k\! -\! 32 \sigma \_3 m\! &=\! c\_0 \sum \_\{j=1\}^m\! \epsilon \_\{k, j\}^2\! \left( \sum \_\{l \ne j\} \Delta G\_4 (p\_j,\! p\_l)\! +\! \Delta R\_4 (p\_j,\! p\_j)\!+\! \frac\{1\}\{32 \sigma \_3\} \Delta \log h(p\_j) \!\right)\hspace\{-2.0pt\}\\ &\quad + o\left(\sum \_\{j=1\}^m \epsilon \_\{k, j\}^2\right) \end\{aligned\} \]where $c_0\!&gt;\!0$, $\log \frac\{64\}\{\epsilon _\{k, j\}^4 \}\!=\!\!\! \max \limits _\{x \in B_\delta (p_j)\}\! u_k (x) \!-\!\log (\int \limits _\Omega h e^\{u_k\}) $ and $u_k \!\rightarrow \! 32 \sigma _3 \sum \limits _\{j=1\}^m G_4 (\cdot , p_j)$ in $ C^4_\{\rm loc\} ( \Omega \backslash \lbrace p_1, \ldots , p_m\rbrace )$. This yields a bound of solutions as $\rho _k$ converges to $ 32 \sigma _3 m$ from below provided that\[ \sum \_\{j=1\}^m \left( \sum \_\{l \ne j\} \Delta G\_4 (p\_j, p\_l) + \Delta R\_4 (p\_j, p\_j)+ \frac\{1\}\{32 \sigma \_3\} \Delta \log h(p\_j) \right)&gt;0.\]The analytic work of this paper is the first step toward computing the Leray-Schauder degree of solutions of equation $(*)$.},
author = {Lin, Chang-Shou, Wei, Juncheng},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {sharp estimates; fourth order mean field equation; Leray-Schauder degree of solution},
language = {eng},
number = {4},
pages = {599-630},
publisher = {Scuola Normale Superiore, Pisa},
title = {Sharp estimates for bubbling solutions of a fourth order mean field equation},
url = {http://eudml.org/doc/272296},
volume = {6},
year = {2007},
}

TY - JOUR
AU - Lin, Chang-Shou
AU - Wei, Juncheng
TI - Sharp estimates for bubbling solutions of a fourth order mean field equation
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2007
PB - Scuola Normale Superiore, Pisa
VL - 6
IS - 4
SP - 599
EP - 630
AB - We consider a sequence of multi-bubble solutions $ u_k$ of the following fourth order equation\[\qquad \qquad \! \Delta ^2 u_k = \rho _k \frac{ h(x) e^{u_k}}{ \int _\Omega h e^{u_k}} \ \ \mbox{in} \ \Omega , \ \ u_k=\Delta u_k=0 \ \ \mbox{on} \ \partial \Omega ,\qquad \qquad \qquad (*)\]where $h$ is a $C^{2, \beta }$ positive function, $\Omega $ is a bounded and smooth domain in $\mathbb {R}^4$, and $\rho _k$ is a constant such that $ \rho _k\! \le \! C$. We show that (after extracting a subsequence), $\lim _{ k\rightarrow +\infty } \rho _k \!=\! 32 \sigma _3 m $ for some positive integer $m\! \ge \! 1$, where $\sigma _3$ is the area of the unit sphere in $\mathbb {R}^4$. Furthermore, we obtain the following sharp estimates for $\rho _k$:\[ \begin{aligned} \rho _k\! -\! 32 \sigma _3 m\! &=\! c_0 \sum _{j=1}^m\! \epsilon _{k, j}^2\! \left( \sum _{l \ne j} \Delta G_4 (p_j,\! p_l)\! +\! \Delta R_4 (p_j,\! p_j)\!+\! \frac{1}{32 \sigma _3} \Delta \log h(p_j) \!\right)\hspace{-2.0pt}\\ &\quad + o\left(\sum _{j=1}^m \epsilon _{k, j}^2\right) \end{aligned} \]where $c_0\!&gt;\!0$, $\log \frac{64}{\epsilon _{k, j}^4 }\!=\!\!\! \max \limits _{x \in B_\delta (p_j)}\! u_k (x) \!-\!\log (\int \limits _\Omega h e^{u_k}) $ and $u_k \!\rightarrow \! 32 \sigma _3 \sum \limits _{j=1}^m G_4 (\cdot , p_j)$ in $ C^4_{\rm loc} ( \Omega \backslash \lbrace p_1, \ldots , p_m\rbrace )$. This yields a bound of solutions as $\rho _k$ converges to $ 32 \sigma _3 m$ from below provided that\[ \sum _{j=1}^m \left( \sum _{l \ne j} \Delta G_4 (p_j, p_l) + \Delta R_4 (p_j, p_j)+ \frac{1}{32 \sigma _3} \Delta \log h(p_j) \right)&gt;0.\]The analytic work of this paper is the first step toward computing the Leray-Schauder degree of solutions of equation $(*)$.
LA - eng
KW - sharp estimates; fourth order mean field equation; Leray-Schauder degree of solution
UR - http://eudml.org/doc/272296
ER -

References

top
  1. [1] Adimurthi, F.Robert and M. Struwe, Concentration phenomena for Liuville equations in dimension four, J. Eur. Math. Soc. 8 (2006), 171–180. Zbl05053356MR2239297
  2. [2] H. Brezis and F. Merle, Uniform estimates and blow-up behavior for solutions of - Δ u = V ( x ) e u i ntwo dimensions, Comm. Partial Differential Equation16 (1991), 1223–1254. Zbl0746.35006MR1132783
  3. [3] S. Baraket, M. Dammak, T. Ouni, and F. Pacard, Singular limits for 4-dimensional semilinear elliptic problems with exponential nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire24 (2007), 875–895. Zbl1132.35038MR2371110
  4. [4] D. Bartolucci, C.-C. Chen, C.-S. Lin and G. Tarantello, Profile of blow-up solutions to mean field equations with singular data, Comm. Partial Differential Equations29 (2004), 1241–1265. Zbl1062.35146MR2097983
  5. [5] H. Brezis, Y. Y. Li and I. Shafrir, A sup + inf inequality for some nonlinear elliptic equations involving exponential nonlinearities, J. Funct. Anal.115 (1993), 344–358. Zbl0794.35048MR1234395
  6. [6] S-Y A. Chang and P. C. Yang, Extremal metrics of zeta function determinants on 4-manifolds, Ann. of Math. 142 (1995), 171–212. Zbl0842.58011MR1338677
  7. [7] C. C Chen and C. S. Lin, Sharp estimates for solutions of multi-bubbles in compact Riemann surface, Comm. Pure Appl. Math. 55 (2002), 728–771. Zbl1040.53046MR1885666
  8. [8] C. C. Chen and C. S. Lin, Topological degree for a mean field equation on Riemann surfaces, Comm. Pure Appl. Math.56 (2003), 1667–1727. Zbl1032.58010MR2001443
  9. [9] O. Druet and F. Robert, Bubbling phenomena for fourth-order four-dimensional PDEs with exponential growth, Proc. Amer. Math. Soc.134 (2006), 897–908. Zbl1083.58018MR2180908
  10. [10] E. Hebey and F. Robert, Coercivity and Struwe’s compactness for Paneitz type operators with constant coefficients, Cal. Var. Partial Differential Equations13 (2001), 491–517. Zbl0998.58007MR1867939
  11. [11] E. Hebey, F. Robert and Y. Wen, Compactness and global estimates for a fourth order equation with critical Sobolev growth arising from conformal geometry, Comm. Contemp. Math.8 (2006), 9–65. Zbl1133.58027MR2208810
  12. [12] Y. Y. Li, Harnack inequality: the method of moving planes, Comm. Math. Phys.200 (1999), 421–444. Zbl0928.35057MR1673972
  13. [13] Y. Y. Li and I. Shafrir, Blow-up analysis for solutions of - Δ u = V e u in dimension two, Indiana Univ. Math. J.43 (1994), 1255–1270. Zbl0842.35011MR1322618
  14. [14] C. S. Lin, Locating the peaks of solutions to a Neumann problem via the maximum principle, I: The Neumann problem, Comm. Pure Appl. Math.56 (2001), 1065–1095. Zbl1035.35039MR1835382
  15. [15] C. S. Lin, A classification of solutions of a conformally invariant fourth order equation in R 4 , Comment. Math. Helv.73 (1998), 206–231. Zbl0933.35057MR1611691
  16. [16] C. S. Lin and J.-C. Wei, Locating the peaks of solutions via the maximum principle. II. A local version of the method of moving planes, Comm. Pure Appl. Math. 56 (2003), 784–809. Zbl1121.35310MR1959740
  17. [17] C. S. Lin, L.-P. Wang and J.-C. Wei, Topological degree for 4-dimensional mean field equations, submitted. 
  18. [18] L. Ma and J. Wei, Convergence for a Liouville equation, Comment. Math. Helv.76 (2001), 506–514. Zbl0987.35056MR1854696
  19. [19] A. Malchiodi, Compactness of solutions to some geometric fourth-order equations, J. Reine Angew. Math.594 (2006), 137–174. Zbl1098.53032MR2248155
  20. [20] A. Malchiodi, Morse theory and a scalar field equation on compact surfaces, preprint. Zbl1175.53052MR2483132
  21. [21] K. Nagasaki and T. Suzuki, Asymptotic analysis for two-dimensional elliptic eigenvalue problems with exponentially dominated nonlinearity, Asymptot. Anal.3 (1990), 173–188. Zbl0726.35011MR1061665
  22. [22] J. C. Wei and X. W. Xu, Classification of solutions of higher order conformally invariant equations, Math. Ann.313 (1999), 207–228. Zbl0940.35082MR1679783
  23. [23] J. Wei, Asymptotic behavior of a nonlinear fourth order eigenvalue problem, Comm. Partial Differential Equations21 (1996), 1451–1467. Zbl0872.35013MR1410837

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.