Sharp estimates for bubbling solutions of a fourth order mean field equation
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2007)
- Volume: 6, Issue: 4, page 599-630
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topLin, Chang-Shou, and Wei, Juncheng. "Sharp estimates for bubbling solutions of a fourth order mean field equation." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 6.4 (2007): 599-630. <http://eudml.org/doc/272296>.
@article{Lin2007,
abstract = {We consider a sequence of multi-bubble solutions $ u_k$ of the following fourth order equation\[\qquad \qquad \! \Delta ^2 u\_k = \rho \_k \frac\{ h(x) e^\{u\_k\}\}\{ \int \_\Omega h e^\{u\_k\}\} \ \ \mbox\{in\} \ \Omega , \ \ u\_k=\Delta u\_k=0 \ \ \mbox\{on\} \ \partial \Omega ,\qquad \qquad \qquad (*)\]where $h$ is a $C^\{2, \beta \}$ positive function, $\Omega $ is a bounded and smooth domain in $\mathbb \{R\}^4$, and $\rho _k$ is a constant such that $ \rho _k\! \le \! C$. We show that (after extracting a subsequence), $\lim _\{ k\rightarrow +\infty \} \rho _k \!=\! 32 \sigma _3 m $ for some positive integer $m\! \ge \! 1$, where $\sigma _3$ is the area of the unit sphere in $\mathbb \{R\}^4$. Furthermore, we obtain the following sharp estimates for $\rho _k$:\[ \begin\{aligned\} \rho \_k\! -\! 32 \sigma \_3 m\! &=\! c\_0 \sum \_\{j=1\}^m\! \epsilon \_\{k, j\}^2\! \left( \sum \_\{l \ne j\} \Delta G\_4 (p\_j,\! p\_l)\! +\! \Delta R\_4 (p\_j,\! p\_j)\!+\! \frac\{1\}\{32 \sigma \_3\} \Delta \log h(p\_j) \!\right)\hspace\{-2.0pt\}\\ &\quad + o\left(\sum \_\{j=1\}^m \epsilon \_\{k, j\}^2\right) \end\{aligned\} \]where $c_0\!>\!0$, $\log \frac\{64\}\{\epsilon _\{k, j\}^4 \}\!=\!\!\! \max \limits _\{x \in B_\delta (p_j)\}\! u_k (x) \!-\!\log (\int \limits _\Omega h e^\{u_k\}) $ and $u_k \!\rightarrow \! 32 \sigma _3 \sum \limits _\{j=1\}^m G_4 (\cdot , p_j)$ in $ C^4_\{\rm loc\} ( \Omega \backslash \lbrace p_1, \ldots , p_m\rbrace )$.
This yields a bound of solutions as $\rho _k$ converges to $ 32 \sigma _3 m$ from below provided that\[ \sum \_\{j=1\}^m \left( \sum \_\{l \ne j\} \Delta G\_4 (p\_j, p\_l) + \Delta R\_4 (p\_j, p\_j)+ \frac\{1\}\{32 \sigma \_3\} \Delta \log h(p\_j) \right)>0.\]The analytic work of this paper is the first step toward computing the Leray-Schauder degree of solutions of equation $(*)$.},
author = {Lin, Chang-Shou, Wei, Juncheng},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {sharp estimates; fourth order mean field equation; Leray-Schauder degree of solution},
language = {eng},
number = {4},
pages = {599-630},
publisher = {Scuola Normale Superiore, Pisa},
title = {Sharp estimates for bubbling solutions of a fourth order mean field equation},
url = {http://eudml.org/doc/272296},
volume = {6},
year = {2007},
}
TY - JOUR
AU - Lin, Chang-Shou
AU - Wei, Juncheng
TI - Sharp estimates for bubbling solutions of a fourth order mean field equation
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2007
PB - Scuola Normale Superiore, Pisa
VL - 6
IS - 4
SP - 599
EP - 630
AB - We consider a sequence of multi-bubble solutions $ u_k$ of the following fourth order equation\[\qquad \qquad \! \Delta ^2 u_k = \rho _k \frac{ h(x) e^{u_k}}{ \int _\Omega h e^{u_k}} \ \ \mbox{in} \ \Omega , \ \ u_k=\Delta u_k=0 \ \ \mbox{on} \ \partial \Omega ,\qquad \qquad \qquad (*)\]where $h$ is a $C^{2, \beta }$ positive function, $\Omega $ is a bounded and smooth domain in $\mathbb {R}^4$, and $\rho _k$ is a constant such that $ \rho _k\! \le \! C$. We show that (after extracting a subsequence), $\lim _{ k\rightarrow +\infty } \rho _k \!=\! 32 \sigma _3 m $ for some positive integer $m\! \ge \! 1$, where $\sigma _3$ is the area of the unit sphere in $\mathbb {R}^4$. Furthermore, we obtain the following sharp estimates for $\rho _k$:\[ \begin{aligned} \rho _k\! -\! 32 \sigma _3 m\! &=\! c_0 \sum _{j=1}^m\! \epsilon _{k, j}^2\! \left( \sum _{l \ne j} \Delta G_4 (p_j,\! p_l)\! +\! \Delta R_4 (p_j,\! p_j)\!+\! \frac{1}{32 \sigma _3} \Delta \log h(p_j) \!\right)\hspace{-2.0pt}\\ &\quad + o\left(\sum _{j=1}^m \epsilon _{k, j}^2\right) \end{aligned} \]where $c_0\!>\!0$, $\log \frac{64}{\epsilon _{k, j}^4 }\!=\!\!\! \max \limits _{x \in B_\delta (p_j)}\! u_k (x) \!-\!\log (\int \limits _\Omega h e^{u_k}) $ and $u_k \!\rightarrow \! 32 \sigma _3 \sum \limits _{j=1}^m G_4 (\cdot , p_j)$ in $ C^4_{\rm loc} ( \Omega \backslash \lbrace p_1, \ldots , p_m\rbrace )$.
This yields a bound of solutions as $\rho _k$ converges to $ 32 \sigma _3 m$ from below provided that\[ \sum _{j=1}^m \left( \sum _{l \ne j} \Delta G_4 (p_j, p_l) + \Delta R_4 (p_j, p_j)+ \frac{1}{32 \sigma _3} \Delta \log h(p_j) \right)>0.\]The analytic work of this paper is the first step toward computing the Leray-Schauder degree of solutions of equation $(*)$.
LA - eng
KW - sharp estimates; fourth order mean field equation; Leray-Schauder degree of solution
UR - http://eudml.org/doc/272296
ER -
References
top- [1] Adimurthi, F.Robert and M. Struwe, Concentration phenomena for Liuville equations in dimension four, J. Eur. Math. Soc. 8 (2006), 171–180. Zbl05053356MR2239297
- [2] H. Brezis and F. Merle, Uniform estimates and blow-up behavior for solutions of i ntwo dimensions, Comm. Partial Differential Equation16 (1991), 1223–1254. Zbl0746.35006MR1132783
- [3] S. Baraket, M. Dammak, T. Ouni, and F. Pacard, Singular limits for 4-dimensional semilinear elliptic problems with exponential nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire24 (2007), 875–895. Zbl1132.35038MR2371110
- [4] D. Bartolucci, C.-C. Chen, C.-S. Lin and G. Tarantello, Profile of blow-up solutions to mean field equations with singular data, Comm. Partial Differential Equations29 (2004), 1241–1265. Zbl1062.35146MR2097983
- [5] H. Brezis, Y. Y. Li and I. Shafrir, A inequality for some nonlinear elliptic equations involving exponential nonlinearities, J. Funct. Anal.115 (1993), 344–358. Zbl0794.35048MR1234395
- [6] S-Y A. Chang and P. C. Yang, Extremal metrics of zeta function determinants on 4-manifolds, Ann. of Math. 142 (1995), 171–212. Zbl0842.58011MR1338677
- [7] C. C Chen and C. S. Lin, Sharp estimates for solutions of multi-bubbles in compact Riemann surface, Comm. Pure Appl. Math. 55 (2002), 728–771. Zbl1040.53046MR1885666
- [8] C. C. Chen and C. S. Lin, Topological degree for a mean field equation on Riemann surfaces, Comm. Pure Appl. Math.56 (2003), 1667–1727. Zbl1032.58010MR2001443
- [9] O. Druet and F. Robert, Bubbling phenomena for fourth-order four-dimensional PDEs with exponential growth, Proc. Amer. Math. Soc.134 (2006), 897–908. Zbl1083.58018MR2180908
- [10] E. Hebey and F. Robert, Coercivity and Struwe’s compactness for Paneitz type operators with constant coefficients, Cal. Var. Partial Differential Equations13 (2001), 491–517. Zbl0998.58007MR1867939
- [11] E. Hebey, F. Robert and Y. Wen, Compactness and global estimates for a fourth order equation with critical Sobolev growth arising from conformal geometry, Comm. Contemp. Math.8 (2006), 9–65. Zbl1133.58027MR2208810
- [12] Y. Y. Li, Harnack inequality: the method of moving planes, Comm. Math. Phys.200 (1999), 421–444. Zbl0928.35057MR1673972
- [13] Y. Y. Li and I. Shafrir, Blow-up analysis for solutions of in dimension two, Indiana Univ. Math. J.43 (1994), 1255–1270. Zbl0842.35011MR1322618
- [14] C. S. Lin, Locating the peaks of solutions to a Neumann problem via the maximum principle, I: The Neumann problem, Comm. Pure Appl. Math.56 (2001), 1065–1095. Zbl1035.35039MR1835382
- [15] C. S. Lin, A classification of solutions of a conformally invariant fourth order equation in , Comment. Math. Helv.73 (1998), 206–231. Zbl0933.35057MR1611691
- [16] C. S. Lin and J.-C. Wei, Locating the peaks of solutions via the maximum principle. II. A local version of the method of moving planes, Comm. Pure Appl. Math. 56 (2003), 784–809. Zbl1121.35310MR1959740
- [17] C. S. Lin, L.-P. Wang and J.-C. Wei, Topological degree for 4-dimensional mean field equations, submitted.
- [18] L. Ma and J. Wei, Convergence for a Liouville equation, Comment. Math. Helv.76 (2001), 506–514. Zbl0987.35056MR1854696
- [19] A. Malchiodi, Compactness of solutions to some geometric fourth-order equations, J. Reine Angew. Math.594 (2006), 137–174. Zbl1098.53032MR2248155
- [20] A. Malchiodi, Morse theory and a scalar field equation on compact surfaces, preprint. Zbl1175.53052MR2483132
- [21] K. Nagasaki and T. Suzuki, Asymptotic analysis for two-dimensional elliptic eigenvalue problems with exponentially dominated nonlinearity, Asymptot. Anal.3 (1990), 173–188. Zbl0726.35011MR1061665
- [22] J. C. Wei and X. W. Xu, Classification of solutions of higher order conformally invariant equations, Math. Ann.313 (1999), 207–228. Zbl0940.35082MR1679783
- [23] J. Wei, Asymptotic behavior of a nonlinear fourth order eigenvalue problem, Comm. Partial Differential Equations21 (1996), 1451–1467. Zbl0872.35013MR1410837
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.