Exponentials Form a Basis of Discrete Holomorphic Functions on a Compact
Bulletin de la Société Mathématique de France (2004)
- Volume: 132, Issue: 2, page 305-326
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topMercat, Christian. "Exponentials Form a Basis of Discrete Holomorphic Functions on a Compact." Bulletin de la Société Mathématique de France 132.2 (2004): 305-326. <http://eudml.org/doc/272342>.
@article{Mercat2004,
abstract = {We show that discrete exponentials form a basis of discrete holomorphic functions on a finite critical map. On a combinatorially convex set, the discrete polynomials form a basis as well.},
author = {Mercat, Christian},
journal = {Bulletin de la Société Mathématique de France},
keywords = {discrete holomorphic functions; discrete analytic functions; monodriffic functions; exponentials},
language = {eng},
number = {2},
pages = {305-326},
publisher = {Société mathématique de France},
title = {Exponentials Form a Basis of Discrete Holomorphic Functions on a Compact},
url = {http://eudml.org/doc/272342},
volume = {132},
year = {2004},
}
TY - JOUR
AU - Mercat, Christian
TI - Exponentials Form a Basis of Discrete Holomorphic Functions on a Compact
JO - Bulletin de la Société Mathématique de France
PY - 2004
PB - Société mathématique de France
VL - 132
IS - 2
SP - 305
EP - 326
AB - We show that discrete exponentials form a basis of discrete holomorphic functions on a finite critical map. On a combinatorially convex set, the discrete polynomials form a basis as well.
LA - eng
KW - discrete holomorphic functions; discrete analytic functions; monodriffic functions; exponentials
UR - http://eudml.org/doc/272342
ER -
References
top- [1] S. Agafonov & A. Bobenko – « Discrete and Painlevé equations », Internat. Math. Res. Notices (2000), no. 4, p. 165–193. Zbl0969.39015MR1747617
- [2] A. Bobenko – « Discrete conformal maps and surfaces », Symmetries and integrability of difference equations (Canterbury, 1996), Cambridge Univ. Press, Cambridge, 1999, p. 97–108. Zbl1001.53001MR1705222
- [3] A. Bobenko & U. Pinkall – « Discrete isothermic surfaces », J. reine angew. Math. 475 (1996), p. 187–208. Zbl0845.53005MR1396732
- [4] A. Bobenko & R. Seiler (éds.) – Discrete integrable geometry and physics, Oxford Lecture Series in Mathematics and its Applications, vol. 16, The Clarendon Press Oxford University Press, New York, 1999. Zbl0936.37027MR1676681
- [5] A. Bobenko & Y. Suris – « Integrable systems on quad-graphs », http://arXiv.org/abs/nlin.SI/0110004, 2001. Zbl1004.37053MR1890049
- [6] Y. Colin de Verdière, I. Gitler & D. Vertigan – « Réseaux électriques planaires. II », Comm. Math. Helv. 71 (1996), no. 1, p. 144–167. Zbl0853.05074MR1371682
- [7] R. Duffin – « Basic properties of discrete analytic functions », Duke Math. J.23 (1956), p. 335–363. Zbl0070.30503MR78441
- [8] —, « Potential theory on a rhombic lattice », J. Comb. Theory5 (1968), p. 258–272. Zbl0247.31003MR232005
- [9] U. Hertrich-Jeromin – Introduction to Möbius Differential Geometry, London Mathematical Society Lecture Note Series, vol. 300, Cambridge University Press, Cambridge, 2003. Zbl1040.53002MR2004958
- [10] R. Kenyon – « The Laplacian and Dirac operators on critical planar graphs », Invent. Math. 150 (2002), no. 2, p. 409–439, http://arXiv.org/abs/math-ph/0202018. Zbl1038.58037MR1933589
- [11] C. Mercat – « Discrete Period Matrices and Related Topics », http://arXiv.org/abs/math-ph/0111043.
- [12] —, « Discrete Polynomials and Discrete Holomorphic Approximation », http://arXiv.org/abs/math-ph/0206041.
- [13] —, « Discrete Riemann surfaces and the Ising model », Comm. Math. Phys. 218 (2001), no. 1, p. 177–216. Zbl1043.82005MR1824204
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.