Exponentials Form a Basis of Discrete Holomorphic Functions on a Compact

Christian Mercat

Bulletin de la Société Mathématique de France (2004)

  • Volume: 132, Issue: 2, page 305-326
  • ISSN: 0037-9484

Abstract

top
We show that discrete exponentials form a basis of discrete holomorphic functions on a finite critical map. On a combinatorially convex set, the discrete polynomials form a basis as well.

How to cite

top

Mercat, Christian. "Exponentials Form a Basis of Discrete Holomorphic Functions on a Compact." Bulletin de la Société Mathématique de France 132.2 (2004): 305-326. <http://eudml.org/doc/272342>.

@article{Mercat2004,
abstract = {We show that discrete exponentials form a basis of discrete holomorphic functions on a finite critical map. On a combinatorially convex set, the discrete polynomials form a basis as well.},
author = {Mercat, Christian},
journal = {Bulletin de la Société Mathématique de France},
keywords = {discrete holomorphic functions; discrete analytic functions; monodriffic functions; exponentials},
language = {eng},
number = {2},
pages = {305-326},
publisher = {Société mathématique de France},
title = {Exponentials Form a Basis of Discrete Holomorphic Functions on a Compact},
url = {http://eudml.org/doc/272342},
volume = {132},
year = {2004},
}

TY - JOUR
AU - Mercat, Christian
TI - Exponentials Form a Basis of Discrete Holomorphic Functions on a Compact
JO - Bulletin de la Société Mathématique de France
PY - 2004
PB - Société mathématique de France
VL - 132
IS - 2
SP - 305
EP - 326
AB - We show that discrete exponentials form a basis of discrete holomorphic functions on a finite critical map. On a combinatorially convex set, the discrete polynomials form a basis as well.
LA - eng
KW - discrete holomorphic functions; discrete analytic functions; monodriffic functions; exponentials
UR - http://eudml.org/doc/272342
ER -

References

top
  1. [1] S. Agafonov & A. Bobenko – « Discrete Z γ and Painlevé equations », Internat. Math. Res. Notices (2000), no. 4, p. 165–193. Zbl0969.39015MR1747617
  2. [2] A. Bobenko – « Discrete conformal maps and surfaces », Symmetries and integrability of difference equations (Canterbury, 1996), Cambridge Univ. Press, Cambridge, 1999, p. 97–108. Zbl1001.53001MR1705222
  3. [3] A. Bobenko & U. Pinkall – « Discrete isothermic surfaces », J. reine angew. Math. 475 (1996), p. 187–208. Zbl0845.53005MR1396732
  4. [4] A. Bobenko & R. Seiler (éds.) – Discrete integrable geometry and physics, Oxford Lecture Series in Mathematics and its Applications, vol. 16, The Clarendon Press Oxford University Press, New York, 1999. Zbl0936.37027MR1676681
  5. [5] A. Bobenko & Y. Suris – « Integrable systems on quad-graphs », http://arXiv.org/abs/nlin.SI/0110004, 2001. Zbl1004.37053MR1890049
  6. [6] Y. Colin de Verdière, I. Gitler & D. Vertigan – « Réseaux électriques planaires. II », Comm. Math. Helv. 71 (1996), no. 1, p. 144–167. Zbl0853.05074MR1371682
  7. [7] R. Duffin – « Basic properties of discrete analytic functions », Duke Math. J.23 (1956), p. 335–363. Zbl0070.30503MR78441
  8. [8] —, « Potential theory on a rhombic lattice », J. Comb. Theory5 (1968), p. 258–272. Zbl0247.31003MR232005
  9. [9] U. Hertrich-Jeromin – Introduction to Möbius Differential Geometry, London Mathematical Society Lecture Note Series, vol. 300, Cambridge University Press, Cambridge, 2003. Zbl1040.53002MR2004958
  10. [10] R. Kenyon – « The Laplacian and Dirac operators on critical planar graphs », Invent. Math. 150 (2002), no. 2, p. 409–439, http://arXiv.org/abs/math-ph/0202018. Zbl1038.58037MR1933589
  11. [11] C. Mercat – « Discrete Period Matrices and Related Topics », http://arXiv.org/abs/math-ph/0111043. 
  12. [12] —, « Discrete Polynomials and Discrete Holomorphic Approximation », http://arXiv.org/abs/math-ph/0206041. 
  13. [13] —, « Discrete Riemann surfaces and the Ising model », Comm. Math. Phys. 218 (2001), no. 1, p. 177–216. Zbl1043.82005MR1824204

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.