Semistability of Frobenius direct images over curves

Vikram B. Mehta; Christian Pauly

Bulletin de la Société Mathématique de France (2007)

  • Volume: 135, Issue: 1, page 105-117
  • ISSN: 0037-9484

Abstract

top
Let X be a smooth projective curve of genus g 2 defined over an algebraically closed field k of characteristic p > 0 . Given a semistable vector bundle  E over X , we show that its direct image F * E under the Frobenius map F of X is again semistable. We deduce a numerical characterization of the stable rank- p vector bundles  F * L , where L is a line bundle over X .

How to cite

top

Mehta, Vikram B., and Pauly, Christian. "Semistability of Frobenius direct images over curves." Bulletin de la Société Mathématique de France 135.1 (2007): 105-117. <http://eudml.org/doc/272383>.

@article{Mehta2007,
abstract = {Let $X$ be a smooth projective curve of genus $g \ge 2$ defined over an algebraically closed field $k$ of characteristic $p&gt;0$. Given a semistable vector bundle $E$ over $X$, we show that its direct image $F_*E$ under the Frobenius map $F$ of $X$ is again semistable. We deduce a numerical characterization of the stable rank-$p$ vector bundles $F_*L$, where $L$ is a line bundle over $X$.},
author = {Mehta, Vikram B., Pauly, Christian},
journal = {Bulletin de la Société Mathématique de France},
keywords = {vector bundle; semistability; Frobenius},
language = {eng},
number = {1},
pages = {105-117},
publisher = {Société mathématique de France},
title = {Semistability of Frobenius direct images over curves},
url = {http://eudml.org/doc/272383},
volume = {135},
year = {2007},
}

TY - JOUR
AU - Mehta, Vikram B.
AU - Pauly, Christian
TI - Semistability of Frobenius direct images over curves
JO - Bulletin de la Société Mathématique de France
PY - 2007
PB - Société mathématique de France
VL - 135
IS - 1
SP - 105
EP - 117
AB - Let $X$ be a smooth projective curve of genus $g \ge 2$ defined over an algebraically closed field $k$ of characteristic $p&gt;0$. Given a semistable vector bundle $E$ over $X$, we show that its direct image $F_*E$ under the Frobenius map $F$ of $X$ is again semistable. We deduce a numerical characterization of the stable rank-$p$ vector bundles $F_*L$, where $L$ is a line bundle over $X$.
LA - eng
KW - vector bundle; semistability; Frobenius
UR - http://eudml.org/doc/272383
ER -

References

top
  1. [1] A. Beauville – « On the stability of the direct image of a generic vector bundle », preprint available at http://math.unice.fr/~beauvill/pubs/imdir.pdf. 
  2. [2] G. Faltings – « Projective connections and G -bundles », J. Algebraic Geom.2 (1993), p. 507–568. Zbl0790.14019MR1211997
  3. [3] K. Joshi, S. Ramanan, E. Z. Xia & J. K. Yu – « On vector bundles destabilized by Frobenius pull-back », Compos. Math.142 (2006), p. 616–630. Zbl1101.14049MR2231194
  4. [4] H. Lange & C. Pauly – « On Frobenius-destabilized rank- 2 vector bundles over curves », Comm. Math. Helvetici83 (2008), p. 179–209. Zbl1157.14017MR2365412
  5. [5] Y. Laszlo & C. Pauly – « The Frobenius map, rank 2 vector bundles and Kummer’s quartic surface in characteristic 2 and 3 », Adv. Math.185 (2004), p. 246–269. Zbl1055.14038MR2060469
  6. [6] J. Le Potier – « Module des fibrés semi-stables et fonctions thêta », in Moduli of vector bundles (Sanda 1994, Kyoto 1994), Lect. Notes Pure Appl. Math., vol. 179, Dekker, New York, 1996, p. 83–101. Zbl0890.14017MR1397983
  7. [7] V. B. Mehta & S. Subramanian – « Nef line bundles which are not ample », Math. Z.219 (1995), p. 235–244. Zbl0826.14009MR1337219
  8. [8] B. Osserman – « The generalized Verschiebung map for curves of genus 2 », Math. Ann.336 (2006), p. 963–986. Zbl1111.14031MR2255181
  9. [9] M. Raynaud – « Sections des fibrés vectoriels sur une courbe », Bull. Soc. Math. France110 (1982), p. 103–125. Zbl0505.14011MR662131
  10. [10] N. I. Shepherd-Barron – « Semistability and reduction mod p », Topology37 (1998), p. 659–664. Zbl0926.14021MR1604907
  11. [11] X. Sun – « Remarks on semistability of G -bundles in positive characteristic », Compos. Math.119 (1999), p. 41–52. Zbl0951.14031MR1711507

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.