Dimension of weakly expanding points for quadratic maps

Samuel Senti

Bulletin de la Société Mathématique de France (2003)

  • Volume: 131, Issue: 3, page 399-420
  • ISSN: 0037-9484

Abstract

top
For the real quadratic map and a given a point has good expansion properties if any interval containing also contains a neighborhood  of with univalent, with bounded distortion and for some . The -weakly expanding set is the set of points which do not have good expansion properties. Let denote the negative fixed point and the first return time of the critical orbit to . We show there is a set of parameters with positive Lebesgue measure for which the Hausdorff dimension of the -weakly expanding set is bounded above and below by for close to . For arbitrary the dimension is of the order of Constants depend only on . The Folklore Theorem then implies the existence of an absolutely continuous invariant probability measure for with (Jakobson’s Theorem).

How to cite

top

Senti, Samuel. "Dimension of weakly expanding points for quadratic maps." Bulletin de la Société Mathématique de France 131.3 (2003): 399-420. <http://eudml.org/doc/272388>.

@article{Senti2003,
abstract = {For the real quadratic map $P_a(x)=x^2+a$ and a given $\epsilon &gt;0$ a point $x$ has good expansion properties if any interval containing $x$ also contains a neighborhood $J$ of $x$ with $P_a^n |_\{J\}$ univalent, with bounded distortion and $B(0, \epsilon )\subseteq P_a^n(J)$ for some $n\in \mathbb \{N\}$. The $\epsilon $-weakly expanding set is the set of points which do not have good expansion properties. Let $\alpha $ denote the negative fixed point and $M$ the first return time of the critical orbit to $[\alpha , -\alpha ]$. We show there is a set $\{\mathcal \{R\}\}$ of parameters with positive Lebesgue measure for which the Hausdorff dimension of the $\epsilon $-weakly expanding set is bounded above and below by $\{\log _2\{M\}\}/\{M\}+\{\mathcal \{O\}\}(\{\log _2\{\log _2\{M\}\}\}/\{M\})$ for $\epsilon $ close to $|\alpha |$. For arbitrary $\epsilon \le |\alpha |$ the dimension is of the order of $\{\mathcal \{O\}\}(\{\log _2\{|\log _2\{\epsilon \}|\}\}/\{|\log _2\{\epsilon \}|\}).$ Constants depend only on $M$. The Folklore Theorem then implies the existence of an absolutely continuous invariant probability measure for $P_a$ with $a\in \{\mathcal \{R\}\}$ (Jakobson’s Theorem).},
author = {Senti, Samuel},
journal = {Bulletin de la Société Mathématique de France},
keywords = {quadratic map; Jakobson’s theorem; Hausdorff dimension; Markov partition; Bernoulli map; induced expansion; absolutely continuous invariant probability measure},
language = {eng},
number = {3},
pages = {399-420},
publisher = {Société mathématique de France},
title = {Dimension of weakly expanding points for quadratic maps},
url = {http://eudml.org/doc/272388},
volume = {131},
year = {2003},
}

TY - JOUR
AU - Senti, Samuel
TI - Dimension of weakly expanding points for quadratic maps
JO - Bulletin de la Société Mathématique de France
PY - 2003
PB - Société mathématique de France
VL - 131
IS - 3
SP - 399
EP - 420
AB - For the real quadratic map $P_a(x)=x^2+a$ and a given $\epsilon &gt;0$ a point $x$ has good expansion properties if any interval containing $x$ also contains a neighborhood $J$ of $x$ with $P_a^n |_{J}$ univalent, with bounded distortion and $B(0, \epsilon )\subseteq P_a^n(J)$ for some $n\in \mathbb {N}$. The $\epsilon $-weakly expanding set is the set of points which do not have good expansion properties. Let $\alpha $ denote the negative fixed point and $M$ the first return time of the critical orbit to $[\alpha , -\alpha ]$. We show there is a set ${\mathcal {R}}$ of parameters with positive Lebesgue measure for which the Hausdorff dimension of the $\epsilon $-weakly expanding set is bounded above and below by ${\log _2{M}}/{M}+{\mathcal {O}}({\log _2{\log _2{M}}}/{M})$ for $\epsilon $ close to $|\alpha |$. For arbitrary $\epsilon \le |\alpha |$ the dimension is of the order of ${\mathcal {O}}({\log _2{|\log _2{\epsilon }|}}/{|\log _2{\epsilon }|}).$ Constants depend only on $M$. The Folklore Theorem then implies the existence of an absolutely continuous invariant probability measure for $P_a$ with $a\in {\mathcal {R}}$ (Jakobson’s Theorem).
LA - eng
KW - quadratic map; Jakobson’s theorem; Hausdorff dimension; Markov partition; Bernoulli map; induced expansion; absolutely continuous invariant probability measure
UR - http://eudml.org/doc/272388
ER -

References

top
  1. [1] A. Avila, M. Lyubich & W. de Melo – « Regular or stochastic dynamics in real analytic families of unimodal maps », Preprint, 2001. Zbl1050.37018
  2. [2] A. Avila & C. Moreira – « Statistical properties of unimodal maps: smooth families with negative Schwarzian derivative », Geometric Methods in Dynamics (I) (W. de Melo, M. Viana & J.-C. Yoccoz, éds.), Astérisque, vol. 286, Soc. Math. France, Paris, 2003, p. 81–118. Zbl1046.37021MR2052298
  3. [3] —, « Statistical properties of unimodal maps: the quadratic family », to appear in Ann. of Math., 2003. Zbl1078.37029
  4. [4] M. Benedicks & L. Carleson – « On iterations of on », 122 (1985), no. 1, p. 1–25. Zbl0597.58016MR799250
  5. [5] —, « The dynamics of the Hénon map », 133 (1991), no. 1, p. 73–169. Zbl0724.58042MR1087346
  6. [6] R. Bowen – Equilibrium states, vol. 470, Springer Verlag, 1975. Zbl0308.28010MR442989
  7. [7] K. Falconer – Fractal Geometry; Mathematical Foundations and Applications, John Wiley, 1990. Zbl0871.28009MR1102677
  8. [8] J. Graczyk & G. Świątek – « Generic hyperbolicity in the logistic family », 146 (1997), no. 1, p. 1–52. Zbl0936.37015MR1469316
  9. [9] M. V. Jakobson – « Absolutely continuous invariant measures for one-parameter families of one-dimensional maps », 81 (1981), no. 1, p. 39–88. Zbl0497.58017MR630331
  10. [10] S. Luzzatto – « Bounded recurrence of critical points and Jakobson’s theorem », The Mandelbrot set, theme and variations, Cambridge Univ. Press, Cambridge, 2000, p. 173–210. Zbl1062.37027MR1765089
  11. [11] M. Lyubich – « Dynamics of quadratic polynomials. I, II », 178 (1997), no. 2, p. 185–247, 247–297. Zbl0908.58053MR1459261
  12. [12] W. de Melo & S. van Strien – One-dimensional dynamics, Springer-Verlag, Berlin, 1993. Zbl0791.58003MR1239171
  13. [13] A. Rényi – « Representations for real numbers and their ergodic properties », Acta Math. Acad. Sci. Hungar8 (1957), p. 477–493. Zbl0079.08901MR97374
  14. [14] M. R. Rychlik – « Another proof of Jakobson’s theorem and related results », 8 (1988), no. 1, p. 93–109. Zbl0671.58019MR939063
  15. [15] S. Senti – « Dimension de Hausdorff de l’ensemble exceptionnel dans le théorème de Jakobson », Thèse, Université de Paris-Sud, 2000, available at http://www.math.psu.edu/senti. 
  16. [16] M. Tsujii – « A proof of Benedicks-Carleson-Jacobson theorem », 16 (1993), no. 2, p. 295–310. Zbl0801.58027MR1247654
  17. [17] J.-C. Yoccoz – « Jakobson’s Theorem », Manuscript of Course at Collège de France, 1997. 

NotesEmbed ?

top

You must be logged in to post comments.