Dimension of weakly expanding points for quadratic maps
Bulletin de la Société Mathématique de France (2003)
- Volume: 131, Issue: 3, page 399-420
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] A. Avila, M. Lyubich & W. de Melo – « Regular or stochastic dynamics in real analytic families of unimodal maps », Preprint, 2001. Zbl1050.37018
- [2] A. Avila & C. Moreira – « Statistical properties of unimodal maps: smooth families with negative Schwarzian derivative », Geometric Methods in Dynamics (I) (W. de Melo, M. Viana & J.-C. Yoccoz, éds.), Astérisque, vol. 286, Soc. Math. France, Paris, 2003, p. 81–118. Zbl1046.37021MR2052298
- [3] —, « Statistical properties of unimodal maps: the quadratic family », to appear in Ann. of Math., 2003. Zbl1078.37029
- [4] M. Benedicks & L. Carleson – « On iterations of on », 122 (1985), no. 1, p. 1–25. Zbl0597.58016MR799250
- [5] —, « The dynamics of the Hénon map », 133 (1991), no. 1, p. 73–169. Zbl0724.58042MR1087346
- [6] R. Bowen – Equilibrium states, vol. 470, Springer Verlag, 1975. Zbl0308.28010MR442989
- [7] K. Falconer – Fractal Geometry; Mathematical Foundations and Applications, John Wiley, 1990. Zbl0871.28009MR1102677
- [8] J. Graczyk & G. Świątek – « Generic hyperbolicity in the logistic family », 146 (1997), no. 1, p. 1–52. Zbl0936.37015MR1469316
- [9] M. V. Jakobson – « Absolutely continuous invariant measures for one-parameter families of one-dimensional maps », 81 (1981), no. 1, p. 39–88. Zbl0497.58017MR630331
- [10] S. Luzzatto – « Bounded recurrence of critical points and Jakobson’s theorem », The Mandelbrot set, theme and variations, Cambridge Univ. Press, Cambridge, 2000, p. 173–210. Zbl1062.37027MR1765089
- [11] M. Lyubich – « Dynamics of quadratic polynomials. I, II », 178 (1997), no. 2, p. 185–247, 247–297. Zbl0908.58053MR1459261
- [12] W. de Melo & S. van Strien – One-dimensional dynamics, Springer-Verlag, Berlin, 1993. Zbl0791.58003MR1239171
- [13] A. Rényi – « Representations for real numbers and their ergodic properties », Acta Math. Acad. Sci. Hungar8 (1957), p. 477–493. Zbl0079.08901MR97374
- [14] M. R. Rychlik – « Another proof of Jakobson’s theorem and related results », 8 (1988), no. 1, p. 93–109. Zbl0671.58019MR939063
- [15] S. Senti – « Dimension de Hausdorff de l’ensemble exceptionnel dans le théorème de Jakobson », Thèse, Université de Paris-Sud, 2000, available at http://www.math.psu.edu/senti.
- [16] M. Tsujii – « A proof of Benedicks-Carleson-Jacobson theorem », 16 (1993), no. 2, p. 295–310. Zbl0801.58027MR1247654
- [17] J.-C. Yoccoz – « Jakobson’s Theorem », Manuscript of Course at Collège de France, 1997.