Dimension of weakly expanding points for quadratic maps
Bulletin de la Société Mathématique de France (2003)
- Volume: 131, Issue: 3, page 399-420
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topSenti, Samuel. "Dimension of weakly expanding points for quadratic maps." Bulletin de la Société Mathématique de France 131.3 (2003): 399-420. <http://eudml.org/doc/272388>.
@article{Senti2003,
abstract = {For the real quadratic map $P_a(x)=x^2+a$ and a given $\epsilon >0$ a point $x$ has good expansion properties if any interval containing $x$ also contains a neighborhood $J$ of $x$ with $P_a^n |_\{J\}$ univalent, with bounded distortion and $B(0, \epsilon )\subseteq P_a^n(J)$ for some $n\in \mathbb \{N\}$. The $\epsilon $-weakly expanding set is the set of points which do not have good expansion properties. Let $\alpha $ denote the negative fixed point and $M$ the first return time of the critical orbit to $[\alpha , -\alpha ]$. We show there is a set $\{\mathcal \{R\}\}$ of parameters with positive Lebesgue measure for which the Hausdorff dimension of the $\epsilon $-weakly expanding set is bounded above and below by $\{\log _2\{M\}\}/\{M\}+\{\mathcal \{O\}\}(\{\log _2\{\log _2\{M\}\}\}/\{M\})$ for $\epsilon $ close to $|\alpha |$. For arbitrary $\epsilon \le |\alpha |$ the dimension is of the order of $\{\mathcal \{O\}\}(\{\log _2\{|\log _2\{\epsilon \}|\}\}/\{|\log _2\{\epsilon \}|\}).$ Constants depend only on $M$. The Folklore Theorem then implies the existence of an absolutely continuous invariant probability measure for $P_a$ with $a\in \{\mathcal \{R\}\}$ (Jakobson’s Theorem).},
author = {Senti, Samuel},
journal = {Bulletin de la Société Mathématique de France},
keywords = {quadratic map; Jakobson’s theorem; Hausdorff dimension; Markov partition; Bernoulli map; induced expansion; absolutely continuous invariant probability measure},
language = {eng},
number = {3},
pages = {399-420},
publisher = {Société mathématique de France},
title = {Dimension of weakly expanding points for quadratic maps},
url = {http://eudml.org/doc/272388},
volume = {131},
year = {2003},
}
TY - JOUR
AU - Senti, Samuel
TI - Dimension of weakly expanding points for quadratic maps
JO - Bulletin de la Société Mathématique de France
PY - 2003
PB - Société mathématique de France
VL - 131
IS - 3
SP - 399
EP - 420
AB - For the real quadratic map $P_a(x)=x^2+a$ and a given $\epsilon >0$ a point $x$ has good expansion properties if any interval containing $x$ also contains a neighborhood $J$ of $x$ with $P_a^n |_{J}$ univalent, with bounded distortion and $B(0, \epsilon )\subseteq P_a^n(J)$ for some $n\in \mathbb {N}$. The $\epsilon $-weakly expanding set is the set of points which do not have good expansion properties. Let $\alpha $ denote the negative fixed point and $M$ the first return time of the critical orbit to $[\alpha , -\alpha ]$. We show there is a set ${\mathcal {R}}$ of parameters with positive Lebesgue measure for which the Hausdorff dimension of the $\epsilon $-weakly expanding set is bounded above and below by ${\log _2{M}}/{M}+{\mathcal {O}}({\log _2{\log _2{M}}}/{M})$ for $\epsilon $ close to $|\alpha |$. For arbitrary $\epsilon \le |\alpha |$ the dimension is of the order of ${\mathcal {O}}({\log _2{|\log _2{\epsilon }|}}/{|\log _2{\epsilon }|}).$ Constants depend only on $M$. The Folklore Theorem then implies the existence of an absolutely continuous invariant probability measure for $P_a$ with $a\in {\mathcal {R}}$ (Jakobson’s Theorem).
LA - eng
KW - quadratic map; Jakobson’s theorem; Hausdorff dimension; Markov partition; Bernoulli map; induced expansion; absolutely continuous invariant probability measure
UR - http://eudml.org/doc/272388
ER -
References
top- [1] A. Avila, M. Lyubich & W. de Melo – « Regular or stochastic dynamics in real analytic families of unimodal maps », Preprint, 2001. Zbl1050.37018
- [2] A. Avila & C. Moreira – « Statistical properties of unimodal maps: smooth families with negative Schwarzian derivative », Geometric Methods in Dynamics (I) (W. de Melo, M. Viana & J.-C. Yoccoz, éds.), Astérisque, vol. 286, Soc. Math. France, Paris, 2003, p. 81–118. Zbl1046.37021MR2052298
- [3] —, « Statistical properties of unimodal maps: the quadratic family », to appear in Ann. of Math., 2003. Zbl1078.37029
- [4] M. Benedicks & L. Carleson – « On iterations of on », 122 (1985), no. 1, p. 1–25. Zbl0597.58016MR799250
- [5] —, « The dynamics of the Hénon map », 133 (1991), no. 1, p. 73–169. Zbl0724.58042MR1087346
- [6] R. Bowen – Equilibrium states, vol. 470, Springer Verlag, 1975. Zbl0308.28010MR442989
- [7] K. Falconer – Fractal Geometry; Mathematical Foundations and Applications, John Wiley, 1990. Zbl0871.28009MR1102677
- [8] J. Graczyk & G. Świątek – « Generic hyperbolicity in the logistic family », 146 (1997), no. 1, p. 1–52. Zbl0936.37015MR1469316
- [9] M. V. Jakobson – « Absolutely continuous invariant measures for one-parameter families of one-dimensional maps », 81 (1981), no. 1, p. 39–88. Zbl0497.58017MR630331
- [10] S. Luzzatto – « Bounded recurrence of critical points and Jakobson’s theorem », The Mandelbrot set, theme and variations, Cambridge Univ. Press, Cambridge, 2000, p. 173–210. Zbl1062.37027MR1765089
- [11] M. Lyubich – « Dynamics of quadratic polynomials. I, II », 178 (1997), no. 2, p. 185–247, 247–297. Zbl0908.58053MR1459261
- [12] W. de Melo & S. van Strien – One-dimensional dynamics, Springer-Verlag, Berlin, 1993. Zbl0791.58003MR1239171
- [13] A. Rényi – « Representations for real numbers and their ergodic properties », Acta Math. Acad. Sci. Hungar8 (1957), p. 477–493. Zbl0079.08901MR97374
- [14] M. R. Rychlik – « Another proof of Jakobson’s theorem and related results », 8 (1988), no. 1, p. 93–109. Zbl0671.58019MR939063
- [15] S. Senti – « Dimension de Hausdorff de l’ensemble exceptionnel dans le théorème de Jakobson », Thèse, Université de Paris-Sud, 2000, available at http://www.math.psu.edu/senti.
- [16] M. Tsujii – « A proof of Benedicks-Carleson-Jacobson theorem », 16 (1993), no. 2, p. 295–310. Zbl0801.58027MR1247654
- [17] J.-C. Yoccoz – « Jakobson’s Theorem », Manuscript of Course at Collège de France, 1997.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.