Cutting the loss of derivatives for solvability under condition
Bulletin de la Société Mathématique de France (2006)
- Volume: 134, Issue: 4, page 559-631
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topLerner, Nicolas. "Cutting the loss of derivatives for solvability under condition $(\Psi )$." Bulletin de la Société Mathématique de France 134.4 (2006): 559-631. <http://eudml.org/doc/272406>.
@article{Lerner2006,
abstract = {For a principal type pseudodifferential operator, we prove that condition $(\psi )$ implies local solvability with a loss of 3/2 derivatives. We use many elements of Dencker’s paper on the proof of the Nirenberg-Treves conjecture and we provide some improvements of the key energy estimates which allows us to cut the loss of derivatives from $\epsilon +3/2$ for any $\epsilon >0$ (Dencker’s most recent result) to 3/2 (the present paper). It is already known that condition $(\psi )$ doesnotimply local solvability with a loss of 1 derivative, so we have to content ourselves with a loss $>1$.},
author = {Lerner, Nicolas},
journal = {Bulletin de la Société Mathématique de France},
keywords = {solvability; a priori estimates; pseudodifferential operators},
language = {eng},
number = {4},
pages = {559-631},
publisher = {Société mathématique de France},
title = {Cutting the loss of derivatives for solvability under condition $(\Psi )$},
url = {http://eudml.org/doc/272406},
volume = {134},
year = {2006},
}
TY - JOUR
AU - Lerner, Nicolas
TI - Cutting the loss of derivatives for solvability under condition $(\Psi )$
JO - Bulletin de la Société Mathématique de France
PY - 2006
PB - Société mathématique de France
VL - 134
IS - 4
SP - 559
EP - 631
AB - For a principal type pseudodifferential operator, we prove that condition $(\psi )$ implies local solvability with a loss of 3/2 derivatives. We use many elements of Dencker’s paper on the proof of the Nirenberg-Treves conjecture and we provide some improvements of the key energy estimates which allows us to cut the loss of derivatives from $\epsilon +3/2$ for any $\epsilon >0$ (Dencker’s most recent result) to 3/2 (the present paper). It is already known that condition $(\psi )$ doesnotimply local solvability with a loss of 1 derivative, so we have to content ourselves with a loss $>1$.
LA - eng
KW - solvability; a priori estimates; pseudodifferential operators
UR - http://eudml.org/doc/272406
ER -
References
top- [1] R. Beals & C. Fefferman – « On local solvability of linear partial differential equations », Ann. of Math.97 (1973), p. 482–498. Zbl0256.35002MR352746
- [2] J. Bony & J. Chemin – « Espaces fonctionnels associés au calcul de Weyl-Hörmander », Bull Soc. Math. France122 (1994), p. 77–118. Zbl0798.35172MR1259109
- [3] J. Bony & N. Lerner – « Quantification asymptotique et microlocalisations d’ordre supérieur », Ann. Sci. Éc. Norm. Sup. 22 (1989), p. 377–433. Zbl0753.35005MR1011988
- [4] N. Dencker – « Estimates and solvability », Ark. Mat.37 (1999), p. 221–243. Zbl1021.35137MR1714771
- [5] —, « On the sufficiency of condition », preprint, May 22 2001.
- [6] —, « The solvability of pseudo-differential operators », Phase space analysis of partial differential equations, Pubbl. Cent. Ric. Mat. Ennio Giorgi, vol. 1, Sc. Norm. Sup., Pisa, 2004, p. 175–200. Zbl1079.35105MR2144409
- [7] —, « The resolution of the Nirenberg-Treves conjecture », Ann. of Math.163 (2006), p. 405–444. Zbl1104.35080MR2199222
- [8] C. Fefferman & D. Phong – « On positivity of pseudo-differential equations », Proc. Nat. Acad. Sci.75 (1978), p. 4673–4674. Zbl0391.35062MR507931
- [9] L. Hörmander – « On the theory of general partial differential operators », Acta Math.94 (1955), p. 161–248. Zbl0067.32201MR76151
- [10] —, « Differential equations without solutions », Math. Ann.140 (1960), p. 169–173. Zbl0093.28903MR147765
- [11] —, « Pseudo-differential operators and non-elliptic boundary value problems », Ann. of Math.83 (1966), p. 129–209. Zbl0132.07402MR233064
- [12] —, « Propagation of singularities and semiglobal existence theorems for (pseudo-)differential operators of principal type », Ann. of Math.108 (1978), p. 569–609. Zbl0396.35087MR512434
- [13] —, « Pseudo-differential operators of principal type », Singularities in boundary value problems, D. Reidel Publ. Co., Dortrecht, Boston, London, 1981.
- [14] —, The analysis of linear partial differential operators I-IV, Springer Verlag, 1983-85. Zbl0601.35001
- [15] —, Notions of convexity, Birkhäuser, 1994. MR1301332
- [16] —, « On the solvability of pseudodifferential equations », Structure of solutions of differential equations (M. Morimoto & T. Kawai, éds.), World Sci. Publishing, River Edge, NJ, 1996, p. 183–213. Zbl0897.35082MR1445329
- [17] —, « private communications », september 2002 – august 2004.
- [18] N. Lerner – « Sufficiency of condition for local solvability in two dimensions », Ann. of Math.128 (1988), p. 243–258. Zbl0682.35112MR960946
- [19] —, « An iff solvability condition for the oblique derivative problem », Séminaire EDP, École polytechnique, 1990-91, exposé 18.
- [20] —, « Nonsolvability in for a first order operator satisfying condition », Ann. of Math.139 (1994), p. 363–393. Zbl0818.35152MR1274095
- [21] —, « Energy methods via coherent states and advanced pseudo-differential calculus », Multidimensional complex analysis and partial differential equations (P. Cordaro, H. Jacobowitz & S. Gindikin, éds.), Amer. Math. Soc., 1997, p. 177–201. Zbl0885.35152MR1447224
- [22] —, « Perturbation and energy estimates », Ann. Sci. Éc. Norm. Sup. 31 (1998), p. 843–886. Zbl0927.35139MR1664214
- [23] —, « When is a pseudo-differential equation solvable? », Ann. Inst. Fourier (Grenoble) 50 (2000), p. 443–460. Zbl0952.35166MR1775357
- [24] —, « Solving pseudo-differential equations », Proceedings of the ICM 2002 in Beijing, vol. II, Higher Education Press, 2002, p. 711–720. Zbl1156.35476MR1957078
- [25] H. Lewy – « An example of a smooth linear partial differential equation without solution », Ann. of Math.66 (1957), p. 155–158. Zbl0078.08104MR88629
- [26] S. Mizohata – « Solutions nulles et solutions non analytiques », J. Math. Kyoto Univ.1 (1962), p. 271–302. Zbl0106.29601MR142873
- [27] R. Moyer – « Local solvability in two dimensions: necessary conditions for the principal type case », mimeographed manuscript, University of Kansas, 1978.
- [28] L. Nirenberg & F. Treves – « Solvability of a first order linear partial differential equation », Comm. Pure Appl. Math.16 (1963), p. 331–351. Zbl0117.06104MR163045
- [29] —, « On local solvability of linear partial differential equations. I. Necessary conditions », Comm. Pure Appl. Math.23 (1970), p. 1–38. Zbl0191.39103MR264470
- [30] —, « On local solvability of linear partial differential equations. II.Sufficient conditions », Comm. Pure Appl. Math.23 (1970), p. 459–509. Zbl0208.35902MR264471
- [31] —, « On local solvability of linear partial differential equations. Correction », Comm. Pure Appl. Math.24 (1971), p. 279–288. Zbl0221.35019MR435641
- [32] J.-M. Trépreau – « Sur la résolubilité analytique microlocale des opérateurs pseudo-différentiels de type principal », Thèse, Université de Reims, 1984.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.