About the generating function of a left bounded integer-valued random variable

Charles Delorme; Jean-Marc Rinkel

Bulletin de la Société Mathématique de France (2008)

  • Volume: 136, Issue: 4, page 565-573
  • ISSN: 0037-9484

Abstract

top
We give a relation between the sign of the mean of an integer-valued, left bounded, random variable X and the number of zeros of 1 - Φ ( z ) inside the unit disk, where Φ is the generating function of X , under some mild conditions

How to cite

top

Delorme, Charles, and Rinkel, Jean-Marc. "About the generating function of a left bounded integer-valued random variable." Bulletin de la Société Mathématique de France 136.4 (2008): 565-573. <http://eudml.org/doc/272414>.

@article{Delorme2008,
abstract = {We give a relation between the sign of the mean of an integer-valued, left bounded, random variable $X$ and the number of zeros of $1-\Phi (z)$ inside the unit disk, where $\Phi $ is the generating function of $X$, under some mild conditions},
author = {Delorme, Charles, Rinkel, Jean-Marc},
journal = {Bulletin de la Société Mathématique de France},
keywords = {random walk; random variable; generating function},
language = {eng},
number = {4},
pages = {565-573},
publisher = {Société mathématique de France},
title = {About the generating function of a left bounded integer-valued random variable},
url = {http://eudml.org/doc/272414},
volume = {136},
year = {2008},
}

TY - JOUR
AU - Delorme, Charles
AU - Rinkel, Jean-Marc
TI - About the generating function of a left bounded integer-valued random variable
JO - Bulletin de la Société Mathématique de France
PY - 2008
PB - Société mathématique de France
VL - 136
IS - 4
SP - 565
EP - 573
AB - We give a relation between the sign of the mean of an integer-valued, left bounded, random variable $X$ and the number of zeros of $1-\Phi (z)$ inside the unit disk, where $\Phi $ is the generating function of $X$, under some mild conditions
LA - eng
KW - random walk; random variable; generating function
UR - http://eudml.org/doc/272414
ER -

References

top
  1. [1] A. F. Beardon – A primer on Riemann surfaces, London Mathematical Society Lecture Note Series, vol. 78, Cambridge University Press, 1984. Zbl0546.30001MR808581
  2. [2] C. Delorme & J.-M. Rinkel – « Application of the Toeplitz matrices to the asymptotic estimation of the potentials for random walks on the non negative integers with a left bounded generator », Prépublication de la faculté des sciences d’Orsay, 2007. 
  3. [3] F. Spitzer – Principles of random walk, 2nd éd., Springer Verlag, 2001. Zbl0359.60003MR388547

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.