The fundamental theorem of prehomogeneous vector spaces modulo (With an appendix by F. Sato)
Raf Cluckers; Adriaan Herremans
Bulletin de la Société Mathématique de France (2007)
- Volume: 135, Issue: 4, page 475-494
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topCluckers, Raf, and Herremans, Adriaan. "The fundamental theorem of prehomogeneous vector spaces modulo $p^m$ (With an appendix by F. Sato)." Bulletin de la Société Mathématique de France 135.4 (2007): 475-494. <http://eudml.org/doc/272426>.
@article{Cluckers2007,
abstract = {For a number field $K$ with ring of integers $\{\mathcal \{O\}\}_K$, we prove an analogue over finite rings of the form $\{\mathcal \{O\}\}_K/\{\mathcal \{P\}\}^m$ of the fundamental theorem on the Fourier transform of a relative invariant of prehomogeneous vector spaces, where $\{\mathcal \{P\}\}$ is a big enough prime ideal of $\{\mathcal \{O\}\}_K$ and $m>1$. In the appendix, F.Sato gives an application of the Theorems 1.1, 1.3 and the Theorems A, B, C in J.Denef and A.Gyoja [Character sums associated to prehomogeneous vector spaces, Compos. Math., 113(1998), 237–346] to the functional equation of $L$-functions of Dirichlet type associated with prehomogeneous vector spaces.},
author = {Cluckers, Raf, Herremans, Adriaan},
journal = {Bulletin de la Société Mathématique de France},
keywords = {prehomogeneous vector spaces; $L$-functions; Bernstein-Sato polynomial; fundamental theorem of prehomogeneous vector spaces; exponential sums},
language = {eng},
number = {4},
pages = {475-494},
publisher = {Société mathématique de France},
title = {The fundamental theorem of prehomogeneous vector spaces modulo $p^m$ (With an appendix by F. Sato)},
url = {http://eudml.org/doc/272426},
volume = {135},
year = {2007},
}
TY - JOUR
AU - Cluckers, Raf
AU - Herremans, Adriaan
TI - The fundamental theorem of prehomogeneous vector spaces modulo $p^m$ (With an appendix by F. Sato)
JO - Bulletin de la Société Mathématique de France
PY - 2007
PB - Société mathématique de France
VL - 135
IS - 4
SP - 475
EP - 494
AB - For a number field $K$ with ring of integers ${\mathcal {O}}_K$, we prove an analogue over finite rings of the form ${\mathcal {O}}_K/{\mathcal {P}}^m$ of the fundamental theorem on the Fourier transform of a relative invariant of prehomogeneous vector spaces, where ${\mathcal {P}}$ is a big enough prime ideal of ${\mathcal {O}}_K$ and $m>1$. In the appendix, F.Sato gives an application of the Theorems 1.1, 1.3 and the Theorems A, B, C in J.Denef and A.Gyoja [Character sums associated to prehomogeneous vector spaces, Compos. Math., 113(1998), 237–346] to the functional equation of $L$-functions of Dirichlet type associated with prehomogeneous vector spaces.
LA - eng
KW - prehomogeneous vector spaces; $L$-functions; Bernstein-Sato polynomial; fundamental theorem of prehomogeneous vector spaces; exponential sums
UR - http://eudml.org/doc/272426
ER -
References
top- [1] Z. I. Borevitch & I. R. Chafarevitch – Théorie des nombres, Traduit par Myriam et Jean-Luc Verley. Traduction faite d’après l’édition originale russe. Monographies Internationales de Mathématiques Modernes, No. 8, Gauthier-Villars, 1967. Zbl0145.04901MR205908
- [2] N. Bourbaki – Éléments de mathématique. Fasc. XXXIII. Variétés différentielles et analytiques. Fascicule de résultats (Paragraphes 1 à 7), Actualités Scientifiques et Industrielles, No. 1333, Hermann, 1967. Zbl0206.50402MR219078
- [3] R. Cluckers & A. Herremans – « The Fundamental Theorem of prehomogeneous vector spaces modulo », main body of this article. Zbl1207.11118
- [4] B. Datskovsky & D. J. Wright – « The adelic zeta function associated to the space of binary cubic forms. II. Local theory », J. reine angew. Math. 367 (1986), p. 27–75. Zbl0575.10016MR839123
- [5] J. Denef & A. Gyoja – « Character sums associated to prehomogeneous vector spaces », Compositio Math.113 (1998), p. 273–346. Zbl0919.11086MR1644996
- [6] A. Gyoja – « Theory of prehomogeneous vector spaces without regularity condition », Publ. Res. Inst. Math. Sci.27 (1991), p. 861–922. Zbl0773.14025MR1145669
- [7] J.-i. Igusa – « Some results on -adic complex powers », Amer. J. Math. 106 (1984), p. 1013–1032. Zbl0589.14023MR761577
- [8] —, An introduction to the theory of local zeta functions, AMS/IP Studies in Advanced Mathematics, vol. 14, American Mathematical Society, 2000. Zbl0959.11047MR1743467
- [9] D. Kazhdan & A. Polishchuk – « Generalized character sums associated to regular prehomogeneous vector spaces », Geom. Funct. Anal.10 (2000), p. 1487–1506. Zbl1001.11053MR1810750
- [10] J. Milnor – Morse theory, Based on lecture notes by M. Spivak and R. Wells. Annals of Mathematics Studies, No. 51, vol. 51, Princeton University Press, 1963. Zbl0108.10401MR163331
- [11] H. Saito – « A generalization of Gauss sums and its applications to Siegel modular forms and -functions associated with the vector space of quadratic forms », J. reine angew. Math. 416 (1991), p. 91–142. Zbl0717.11053MR1099947
- [12] —, « On -functions associated with the vector space of binary quadratic forms », Nagoya Math. J.130 (1993), p. 149–176. Zbl0774.11052MR1223734
- [13] —, « Convergence of the zeta functions of prehomogeneous vector spaces », Nagoya Math. J.170 (2003), p. 1–31. Zbl1045.11083MR1994885
- [14] F. Sato – « L-functions of prehomogeneous vector spaces », Appendix of this article.
- [15] —, « Zeta functions in several variables associated with prehomogeneous vector spaces. I. Functional equations », Tōhoku Math. J. (2) 34 (1982), p. 437–483. Zbl0497.14007MR676121
- [16] —, « On functional equations of zeta distributions », Adv. Stud. Pure Math.15 (1989), p. 465–508. Zbl0714.11053MR1040618
- [17] M. Sato – « Theory of prehomogeneous vector spaces », Sugaku no Ayumi 15 (1970), p. 85–157, notes by T.Shintani. Zbl0715.22014
- [18] —, « Theory of prehomogeneous vector spaces (algebraic part)—the English translation of Sato’s lecture from Shintani’s note », Nagoya Math. J.120 (1990), p. 1–34. Zbl0715.22014MR1086566
- [19] M. Sato & T. Kimura – « A classification of irreducible prehomogeneous vector spaces and their relative invariants », Nagoya Math. J.65 (1977), p. 1–155. Zbl0321.14030MR430336
- [20] J-P. Serre – « Quelques applications du théorème de densité de Chebotarev », Publ. Math. I.H.E.S.54 (1981), p. 323–401. Zbl0496.12011MR644559
- [21] H. M. Stark – « -functions and character sums for quadratic forms. I », Acta Arith. 14 (1967/1968), p. 35–50. Zbl0198.37801MR227122
- [22] T. Ueno – « Elliptic modular forms arising from zeta functions in two variables attached to the space of binary Hermitian forms », J. Number Theory86 (2001), p. 302–329. Zbl1014.11031MR1813115
- [23] —, « Modular forms arising from zeta functions in two variables attached to prehomogeneous vector spaces related to quadratic forms », 2004, to appear in Nagoya Math. J., p. 1–37. MR2085308
- [24] A. Weil – Basic number theory, Die Grundlehren der mathematischen Wissenschaften, Band 144, Springer New York, Inc., New York, 1967. Zbl0176.33601MR234930
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.