A note on intersections of simplices
David A. Edwards; Ondřej F. K. Kalenda; Jiří Spurný
Bulletin de la Société Mathématique de France (2011)
- Volume: 139, Issue: 1, page 89-95
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topEdwards, David A., Kalenda, Ondřej F. K., and Spurný, Jiří. "A note on intersections of simplices." Bulletin de la Société Mathématique de France 139.1 (2011): 89-95. <http://eudml.org/doc/272428>.
@article{Edwards2011,
abstract = {We provide a corrected proof of [1, Théorème 9] stating that any metrizable infinite-dimensional simplex is affinely homeomorphic to the intersection of a decreasing sequence of Bauer simplices.},
author = {Edwards, David A., Kalenda, Ondřej F. K., Spurný, Jiří},
journal = {Bulletin de la Société Mathématique de France},
keywords = {simplex; Bauer simplex; intersection; representing matrix},
language = {eng},
number = {1},
pages = {89-95},
publisher = {Société mathématique de France},
title = {A note on intersections of simplices},
url = {http://eudml.org/doc/272428},
volume = {139},
year = {2011},
}
TY - JOUR
AU - Edwards, David A.
AU - Kalenda, Ondřej F. K.
AU - Spurný, Jiří
TI - A note on intersections of simplices
JO - Bulletin de la Société Mathématique de France
PY - 2011
PB - Société mathématique de France
VL - 139
IS - 1
SP - 89
EP - 95
AB - We provide a corrected proof of [1, Théorème 9] stating that any metrizable infinite-dimensional simplex is affinely homeomorphic to the intersection of a decreasing sequence of Bauer simplices.
LA - eng
KW - simplex; Bauer simplex; intersection; representing matrix
UR - http://eudml.org/doc/272428
ER -
References
top- [1] D. A. Edwards – « Systèmes projectifs d’ensembles convexes compacts », Bull. Soc. Math. France103 (1975), p. 225–240. Zbl0346.46002MR397359
- [2] V. P. Fonf, J. Lindenstrauss & R. R. Phelps – « Infinite dimensional convexity », in Handbook of the geometry of Banach spaces, Vol. I, North-Holland, 2001, p. 599–670. Zbl1086.46004MR1863703
- [3] A. J. Lazar & J. Lindenstrauss – « Banach spaces whose duals are spaces and their representing matrices », Acta Math.126 (1971), p. 165–193. Zbl0209.43201MR291771
- [4] J. Lindenstrauss, G. H. Olsen & Y. Sternfeld – « The Poulsen simplex », Ann. Inst. Fourier (Grenoble) 28 (1978), p. 91–114. Zbl0363.46006MR500918
- [5] Y. Sternfeld – « Characterization of Bauer simplices and some other classes of Choquet simplices by their representing matrices », in Notes in Banach spaces, Univ. Texas Press, 1980, p. 306–358. Zbl0556.46006MR606224
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.