Filling Radius and Short Closed Geodesics of the -Sphere
Bulletin de la Société Mathématique de France (2004)
- Volume: 132, Issue: 1, page 105-136
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topSabourau, Stéphane. "Filling Radius and Short Closed Geodesics of the $2$-Sphere." Bulletin de la Société Mathématique de France 132.1 (2004): 105-136. <http://eudml.org/doc/272430>.
@article{Sabourau2004,
abstract = {We show that the length of the shortest nontrivial curve among the simple closed geodesics of index zero or one and the figure-eight geodesics of null index provides a lower bound on the area and the diameter of the Riemannian $2$-spheres.},
author = {Sabourau, Stéphane},
journal = {Bulletin de la Société Mathématique de France},
keywords = {filling radius; closed geodesics; $1$-cycles},
language = {eng},
number = {1},
pages = {105-136},
publisher = {Société mathématique de France},
title = {Filling Radius and Short Closed Geodesics of the $2$-Sphere},
url = {http://eudml.org/doc/272430},
volume = {132},
year = {2004},
}
TY - JOUR
AU - Sabourau, Stéphane
TI - Filling Radius and Short Closed Geodesics of the $2$-Sphere
JO - Bulletin de la Société Mathématique de France
PY - 2004
PB - Société mathématique de France
VL - 132
IS - 1
SP - 105
EP - 136
AB - We show that the length of the shortest nontrivial curve among the simple closed geodesics of index zero or one and the figure-eight geodesics of null index provides a lower bound on the area and the diameter of the Riemannian $2$-spheres.
LA - eng
KW - filling radius; closed geodesics; $1$-cycles
UR - http://eudml.org/doc/272430
ER -
References
top- [1] R. Accola – « Differential and extremal lengths on Riemannian surfaces », Proc. Math. Acad. Sci. USA46 (1960), p. 83–96. MR118829
- [2] F. Almgren – « The homotopy groups of the integral cycle groups », Topology1 (1960), p. 257–299. Zbl0118.18503MR146835
- [3] I. Babenko – « Asymptotic invariants of smooth manifolds », Russian Acad. Sci. Izv. Math.41 (1993), p. 1–38. Zbl0812.57022MR1208148
- [4] V. Bangert & M. Katz – « Riemannian manifolds with harmonic -forms of constant norms », Preprint.
- [5] —, « Stable systolic inequalities and cohomology products », Comm. Pure Appl. Math. 56 (2003). Zbl1038.53031MR1990484
- [6] C. Bavard – « Inégalité isosystolique pour la bouteille de Klein », Math. Ann.274 (1986), p. 439–441. Zbl0578.53032MR842624
- [7] M. Berger – « Systole et applications selon Gromov », Sémin. Bourbaki, Astérisque, vol. 216, Soc. Math. France, 1993, p. 279–310. Zbl0789.53040MR1246401
- [8] C. Blatter – « Über extremallägen auf geschlossen flächen », Comment. Math. Helv.35 (1961), p. 55–62. Zbl0107.28404MR131539
- [9] Y. Burago & V. Zalgaller – Geometric inequalities, Springer, 1988. Zbl0633.53002MR936419
- [10] E. Calabi & J. Cao – « Simple closed geodesics on convex surfaces », J. Diff. Geom.36 (1992), p. 517–549. Zbl0768.53019MR1189495
- [11] J. Cheeger & D. Ebin – Comparaison theorems in Riemannian geometry, North-Holland, Amsterdam, 1975. Zbl0309.53035MR458335
- [12] C. Croke – « Area and the length of shortest closed geodesic », J. Diff. Geom.27 (1988), p. 1–22. Zbl0642.53045MR918453
- [13] C. Croke & M. Katz – « Universal volume bounds in Riemannian manifolds », Surveys in Differential Geometry, vol. 8, to appear. Zbl1051.53026MR2039987
- [14] H. Federer – Geometric measure theory, Springer-Verlag, New York, 1969. Zbl0874.49001MR257325
- [15] S. Frankel & M. Katz – « Morse landscape of a Riemannian disk », Ann. Inst. Fourier43 (1993), p. 503–507. Zbl0780.53035MR1220281
- [16] M. Grayson – « Shortening embedded curves », Ann. Math.129 (1989), p. 71–111. Zbl0686.53036MR979601
- [17] M. Gromov – « Filling Riemannian manifolds », J. Diff. Geom.18 (1983), p. 1–147. Zbl0515.53037MR697984
- [18] —, « Systoles and intersystolic inequalities », Actes de la Table Ronde de Géométrie Différentielle (Luminy, 1992), Sémin. Congr., vol. 1, Soc. Math. France, 1996, p. 291–363. Zbl0877.53002MR1427763
- [19] —, Metric structures for Riemannian and non-Riemannian spaces, Progr. in Mathematics, vol. 152, Birkhäuser, Boston, 1999. MR1699320
- [20] J. Hass & P. Scott – « Shortening curves on surfaces », Topology33 (1994), p. 25–43. Zbl0798.58019MR1259513
- [21] J. Hebda – « Some lower bounds for the area of surfaces », Invent. Math.65 (1982), p. 485–491. Zbl0482.53028MR643566
- [22] —, « The collars of a Riemannian manifold and stable isosystolic inequalities », Pacific J. Math.121 (1986), p. 339–356. Zbl0607.53043MR819193
- [23] M. Katz – « The filling radius of two-point homogeneous spaces », J. Diff. Geom.18 (1983), p. 505–511. Zbl0529.53032MR723814
- [24] M. Katz, M. Kreck & A. Suciu – « Free abelian covers, short loops, stable length and systolic inequalities », Preprint. Zbl1134.53019
- [25] W. Klingenberg – Lectures on closed geodesics, Appendix, Grundlehren Math. Wiss., vol. 230, Springer-Verlag, Berlin, 1978. Zbl0397.58018MR478069
- [26] M. Maeda – « The length of a closed geodesic on a compact surface », Kyushu J. Math. 48 (1994), no. 1, p. 9–18. Zbl0818.53064MR1269063
- [27] F. Morgan – Geometric measure theory. A beginner’s guide, 2nd éd., Academic Press, 1995. Zbl0671.49043MR1326605
- [28] A. Nabutovsky & R. Rotman – « Volume, diameter and the minimal mass of a stationnary -cycle », Preprint. Zbl1073.53057MR2084979
- [29] —, « The length of the shortest closed geodesic on a -dimensional sphere », Int. Math. Res. Not.23 (2002), p. 1211–1222. Zbl1003.53030MR1903953
- [30] —, « Upper bounds on the length of a shortest closed geodesic and quantitative Hurewicz theorem », J. Eur. Math. Soc.5 (2003), p. 203–244. Zbl1039.53042MR2002213
- [31] J. Pitts – Regularity and singularity of one dimensional stational integral varifolds on manifolds arising from variational methods in the large, Symposia Mathematics, vol. XIV, Roma, Italy, 1974. Zbl0312.49017MR423172
- [32] —, Existence and regularity of minimal surfaces on Riemannian manifolds, Math. Notes, vol. 27, Princeton University Press, 1981. Zbl0462.58003MR626027
- [33] P. Pu – « Some inequalities in certain nonorientable Riemannian manifolds », Pacific J. Math.2 (1952), p. 55–71. Zbl0046.39902MR48886
- [34] G. de Rham – Differentiable manifolds, Grundlehren Math. Wiss., vol. 266, Springer-Verlag, Berlin, 1984. Zbl0534.58003MR760450
- [35] R. Rotman – « Upper bounds on the length of the shortest closed geodesic on simply connected manifolds », Math. Z.233 (2000), p. 365–398. Zbl0960.53026MR1743442
- [36] T. Sakai – « A proof of the isosystolic inequality for the Klein bottle », Proc. Amer. Math. Soc.104 (1988), p. 589–590. Zbl0692.53019MR962833
- [37] B. White – « A strong minimax property of nondegenerate minimal submanifolds », J. reine angew. Math. 457 (1994), p. 203–218. Zbl0808.49037MR1305283
- [38] F. Wilhelm – « On radius, systole and positive Ricci curvature », Math. Z.218 (1995), p. 597–602. Zbl0823.53033MR1326989
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.