On a theorem of Saeki concerning convolution squares of singular measures

Thomas Körner

Bulletin de la Société Mathématique de France (2008)

  • Volume: 136, Issue: 3, page 439-464
  • ISSN: 0037-9484

Abstract

top
If 1 > α > 1 / 2 , then there exists a probability measure μ such that the Hausdorff dimension of the support of μ is α and μ * μ is a Lipschitz function of class α - 1 2 .

How to cite

top

Körner, Thomas. "On a theorem of Saeki concerning convolution squares of singular measures." Bulletin de la Société Mathématique de France 136.3 (2008): 439-464. <http://eudml.org/doc/272433>.

@article{Körner2008,
abstract = {If $1&gt;\alpha &gt;1/2$, then there exists a probability measure $\mu $ such that the Hausdorff dimension of the support of $\mu $ is $\alpha $ and $\mu *\mu $ is a Lipschitz function of class $\alpha -\tfrac\{1\}\{2\}$.},
author = {Körner, Thomas},
journal = {Bulletin de la Société Mathématique de France},
keywords = {convolution square; self convolution; singular measure},
language = {eng},
number = {3},
pages = {439-464},
publisher = {Société mathématique de France},
title = {On a theorem of Saeki concerning convolution squares of singular measures},
url = {http://eudml.org/doc/272433},
volume = {136},
year = {2008},
}

TY - JOUR
AU - Körner, Thomas
TI - On a theorem of Saeki concerning convolution squares of singular measures
JO - Bulletin de la Société Mathématique de France
PY - 2008
PB - Société mathématique de France
VL - 136
IS - 3
SP - 439
EP - 464
AB - If $1&gt;\alpha &gt;1/2$, then there exists a probability measure $\mu $ such that the Hausdorff dimension of the support of $\mu $ is $\alpha $ and $\mu *\mu $ is a Lipschitz function of class $\alpha -\tfrac{1}{2}$.
LA - eng
KW - convolution square; self convolution; singular measure
UR - http://eudml.org/doc/272433
ER -

References

top
  1. [1] N. K. Bary – A treatise on trigonometric series. Vols. I, II, Authorized translation by Margaret F. Mullins. A Pergamon Press Book, The Macmillan Co., 1964. Zbl0129.28002MR171116
  2. [2] C. C. Graham & O. C. McGehee – Essays in commutative harmonic analysis, Grund. Math. Wiss., vol. 238, Springer, 1979. Zbl0439.43001MR550606
  3. [3] G. R. Grimmett & D. R. Stirzaker – Probability and random processes, third éd., Oxford University Press, 2001. Zbl0759.60001MR2059709
  4. [4] S. K. Gupta & K. E. Hare – « On convolution squares of singular measures », Colloq. Math.100 (2004), p. 9–16. Zbl1052.43001MR2079343
  5. [5] F. Hausdorff – Set theory, Chelsea Publishing Company, New York, 1957. Zbl0081.04601MR86020
  6. [6] W. Hoeffding – « Probability inequalities for sums of bounded random variables », J. Amer. Statist. Assoc.58 (1963), p. 13–30. Zbl0127.10602MR144363
  7. [7] J.-P. Kahane & R. Salem – Ensembles parfaits et séries trigonométriques, Actualités Sci. Indust., No. 1301, Hermann, 1963. Zbl0112.29304MR160065
  8. [8] R. Kaufman – « Small subsets of finite abelian groups », Ann. Inst. Fourier (Grenoble) 18 (1968), p. 99–102 V. Zbl0175.30501MR241532
  9. [9] K. Kuratowski – Topology. Vol. I, New edition, revised and augmented. Translated from the French by J. Jaworowski, Academic Press, 1966. Zbl0158.40802MR217751
  10. [10] S. Saeki – « On convolution squares of singular measures », Illinois J. Math.24 (1980), p. 225–232. Zbl0496.42006MR575063
  11. [11] N. Wiener & A. Wintner – « Fourier-Stieltjes Transforms and Singular Infinite Convolutions », Amer. J. Math.60 (1938), p. 513–522. Zbl0019.16901MR1507332JFM64.0223.02

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.