# On systems of linear inequalities

Bulletin de la Société Mathématique de France (2003)

- Volume: 131, Issue: 1, page 41-57
- ISSN: 0037-9484

## Access Full Article

top## Abstract

top## How to cite

topFujimori, Masami. "On systems of linear inequalities." Bulletin de la Société Mathématique de France 131.1 (2003): 41-57. <http://eudml.org/doc/272439>.

@article{Fujimori2003,

abstract = {We show in detail that the category of general Roth systems or the category of semi-stable systems of linear inequalities of slope zero is a neutral Tannakian category. On the way, we present a new proof of the semi-stability of the tensor product of semi-stable systems. The proof is based on a numerical criterion for a system of linear inequalities to be semi-stable.},

author = {Fujimori, Masami},

journal = {Bulletin de la Société Mathématique de France},

keywords = {semi-stability; successive minima; tannakian category; tensor product},

language = {eng},

number = {1},

pages = {41-57},

publisher = {Société mathématique de France},

title = {On systems of linear inequalities},

url = {http://eudml.org/doc/272439},

volume = {131},

year = {2003},

}

TY - JOUR

AU - Fujimori, Masami

TI - On systems of linear inequalities

JO - Bulletin de la Société Mathématique de France

PY - 2003

PB - Société mathématique de France

VL - 131

IS - 1

SP - 41

EP - 57

AB - We show in detail that the category of general Roth systems or the category of semi-stable systems of linear inequalities of slope zero is a neutral Tannakian category. On the way, we present a new proof of the semi-stability of the tensor product of semi-stable systems. The proof is based on a numerical criterion for a system of linear inequalities to be semi-stable.

LA - eng

KW - semi-stability; successive minima; tannakian category; tensor product

UR - http://eudml.org/doc/272439

ER -

## References

top- [1] E. Bombieri & J. Vaaler – « On Siegel’s lemma », Invent. Math. 73 (1983), p. 11–32, Addendum, ibid., t.75 (1984), p.377. Zbl0533.10030MR707346
- [2] P. Deligne & J. Milne – « Tannakian Categories », Hodge Cycles, Motives, and Shimura Varieties (P. Deligne & al., éds.), Lect. Notes in Math., vol. 900, Springer-Verlag, Berlin Heidelberg, 1982, p. 101–228. Zbl0477.14004MR654325
- [3] G. Faltings – « Mumford-Stabilität in der algebraischen Geometrie », Proceedings of the International Congress of Mathematicians 1994 (Zürich, Switzerland), Birkhäuser Verlag, 1995, p. 648–655. Zbl0871.14010MR1403965
- [4] G. Faltings & G. Wüstholz – « Diophantine approximations on projective spaces », Invent. Math.116 (1994), p. 109–138. Zbl0805.14011MR1253191
- [5] R. Ferretti – « Quantitative Diophantine approximations on projective varieties », preprint, http://www.math.ethz.ch/~ferretti, 8 July 1999.
- [6] H. Schlickewei – « Linearformen mit algebraischen Koeffizienten », Manuscripta Math.18 (1976), p. 147–185. Zbl0323.10028MR401665
- [7] W. Schmidt – « Linear forms with algebraic coefficients, I », J. Number Theory3 (1971), p. 253–277. Zbl0221.10034MR308061
- [8] B. Totaro – « Tensor products of semistables are semistable », Geometry and Analysis on Complex Manifolds, World Scientific Publishing, River Edge, NJ, 1994, p. 242–250. Zbl0873.14016MR1463972
- [9] —, « Tensor products in $p$-adic Hodge theory », Duke Math. J.83 (1996), p. 79–104. Zbl0873.14019MR1388844

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.