On systems of linear inequalities

Masami Fujimori

Bulletin de la Société Mathématique de France (2003)

  • Volume: 131, Issue: 1, page 41-57
  • ISSN: 0037-9484

Abstract

top
We show in detail that the category of general Roth systems or the category of semi-stable systems of linear inequalities of slope zero is a neutral Tannakian category. On the way, we present a new proof of the semi-stability of the tensor product of semi-stable systems. The proof is based on a numerical criterion for a system of linear inequalities to be semi-stable.

How to cite

top

Fujimori, Masami. "On systems of linear inequalities." Bulletin de la Société Mathématique de France 131.1 (2003): 41-57. <http://eudml.org/doc/272439>.

@article{Fujimori2003,
abstract = {We show in detail that the category of general Roth systems or the category of semi-stable systems of linear inequalities of slope zero is a neutral Tannakian category. On the way, we present a new proof of the semi-stability of the tensor product of semi-stable systems. The proof is based on a numerical criterion for a system of linear inequalities to be semi-stable.},
author = {Fujimori, Masami},
journal = {Bulletin de la Société Mathématique de France},
keywords = {semi-stability; successive minima; tannakian category; tensor product},
language = {eng},
number = {1},
pages = {41-57},
publisher = {Société mathématique de France},
title = {On systems of linear inequalities},
url = {http://eudml.org/doc/272439},
volume = {131},
year = {2003},
}

TY - JOUR
AU - Fujimori, Masami
TI - On systems of linear inequalities
JO - Bulletin de la Société Mathématique de France
PY - 2003
PB - Société mathématique de France
VL - 131
IS - 1
SP - 41
EP - 57
AB - We show in detail that the category of general Roth systems or the category of semi-stable systems of linear inequalities of slope zero is a neutral Tannakian category. On the way, we present a new proof of the semi-stability of the tensor product of semi-stable systems. The proof is based on a numerical criterion for a system of linear inequalities to be semi-stable.
LA - eng
KW - semi-stability; successive minima; tannakian category; tensor product
UR - http://eudml.org/doc/272439
ER -

References

top
  1. [1] E. Bombieri & J. Vaaler – « On Siegel’s lemma », Invent. Math. 73 (1983), p. 11–32, Addendum, ibid., t.75 (1984), p.377. Zbl0533.10030MR707346
  2. [2] P. Deligne & J. Milne – « Tannakian Categories », Hodge Cycles, Motives, and Shimura Varieties (P. Deligne & al., éds.), Lect. Notes in Math., vol. 900, Springer-Verlag, Berlin Heidelberg, 1982, p. 101–228. Zbl0477.14004MR654325
  3. [3] G. Faltings – « Mumford-Stabilität in der algebraischen Geometrie », Proceedings of the International Congress of Mathematicians 1994 (Zürich, Switzerland), Birkhäuser Verlag, 1995, p. 648–655. Zbl0871.14010MR1403965
  4. [4] G. Faltings & G. Wüstholz – « Diophantine approximations on projective spaces », Invent. Math.116 (1994), p. 109–138. Zbl0805.14011MR1253191
  5. [5] R. Ferretti – « Quantitative Diophantine approximations on projective varieties », preprint, http://www.math.ethz.ch/~ferretti, 8 July 1999. 
  6. [6] H. Schlickewei – « Linearformen mit algebraischen Koeffizienten », Manuscripta Math.18 (1976), p. 147–185. Zbl0323.10028MR401665
  7. [7] W. Schmidt – « Linear forms with algebraic coefficients, I », J. Number Theory3 (1971), p. 253–277. Zbl0221.10034MR308061
  8. [8] B. Totaro – « Tensor products of semistables are semistable », Geometry and Analysis on Complex Manifolds, World Scientific Publishing, River Edge, NJ, 1994, p. 242–250. Zbl0873.14016MR1463972
  9. [9] —, « Tensor products in p -adic Hodge theory », Duke Math. J.83 (1996), p. 79–104. Zbl0873.14019MR1388844

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.