On nonimbeddability of Hartogs figures into complex manifolds
Bulletin de la Société Mathématique de France (2006)
- Volume: 134, Issue: 2, page 261-267
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] M. Brunella – On entire curves tangent to a foliation, Preprint, 2004. Zbl1147.32019MR2413062
- [2] H. Hofer, V. Lizan & J.-C. Sikorav – « On genericity for holomorphic curves in four-dimensional almost-complex manifolds », J. Geom. Anal.7 (1998), p. 149–159. Zbl0911.53014MR1630789
- [3] S. Ivashkovich – « The Hartogs-type extension theorem for meromorphic mappings into compact Kähler manifolds », Invent. Math109 (1992), p. 47–54. Zbl0738.32008MR1168365
- [4] —, « Extension properties of meromorphic mappings with values in non-Kähler complex manifolds », Ann. of Math.160 (2004), p. 795–837. Zbl1081.32010MR2144969
- [5] E. Poletsky – Private communication.
- [6] F. Sarkis – « On nonimbeddability of topologically trivial domains and thin Hartogs figures of into Stein spaces », 2004, math.CV/0411083.