Birational geometry of quadrics

Burt Totaro

Bulletin de la Société Mathématique de France (2009)

  • Volume: 137, Issue: 2, page 253-276
  • ISSN: 0037-9484

Abstract

top
We construct new birational maps between quadrics over a field. The maps apply to several types of quadratic forms, including Pfister neighbors, neighbors of multiples of a Pfister form, and half-neighbors. One application is to determine which quadrics over a field are ruled (that is, birational to the projective line times some variety) in a larger range of dimensions. We describe ruledness completely for quadratic forms of odd dimension at most 17, even dimension at most 10, or dimension 14. The proof uses a new structure theorem for 14-dimensional forms, generalizing Izhboldin’s theorem on 10-dimensional forms. We also show that Vishik’s 16-dimensional form is ruled.

How to cite

top

Totaro, Burt. "Birational geometry of quadrics." Bulletin de la Société Mathématique de France 137.2 (2009): 253-276. <http://eudml.org/doc/272453>.

@article{Totaro2009,
abstract = {We construct new birational maps between quadrics over a field. The maps apply to several types of quadratic forms, including Pfister neighbors, neighbors of multiples of a Pfister form, and half-neighbors. One application is to determine which quadrics over a field are ruled (that is, birational to the projective line times some variety) in a larger range of dimensions. We describe ruledness completely for quadratic forms of odd dimension at most 17, even dimension at most 10, or dimension 14. The proof uses a new structure theorem for 14-dimensional forms, generalizing Izhboldin’s theorem on 10-dimensional forms. We also show that Vishik’s 16-dimensional form is ruled.},
author = {Totaro, Burt},
journal = {Bulletin de la Société Mathématique de France},
keywords = {quadratic forms; ruled varieties; birational geometry; quadratic Zariski problem},
language = {eng},
number = {2},
pages = {253-276},
publisher = {Société mathématique de France},
title = {Birational geometry of quadrics},
url = {http://eudml.org/doc/272453},
volume = {137},
year = {2009},
}

TY - JOUR
AU - Totaro, Burt
TI - Birational geometry of quadrics
JO - Bulletin de la Société Mathématique de France
PY - 2009
PB - Société mathématique de France
VL - 137
IS - 2
SP - 253
EP - 276
AB - We construct new birational maps between quadrics over a field. The maps apply to several types of quadratic forms, including Pfister neighbors, neighbors of multiples of a Pfister form, and half-neighbors. One application is to determine which quadrics over a field are ruled (that is, birational to the projective line times some variety) in a larger range of dimensions. We describe ruledness completely for quadratic forms of odd dimension at most 17, even dimension at most 10, or dimension 14. The proof uses a new structure theorem for 14-dimensional forms, generalizing Izhboldin’s theorem on 10-dimensional forms. We also show that Vishik’s 16-dimensional form is ruled.
LA - eng
KW - quadratic forms; ruled varieties; birational geometry; quadratic Zariski problem
UR - http://eudml.org/doc/272453
ER -

References

top
  1. [1] H. Ahmad & J. Ohm – « Function fields of Pfister neighbors », J. Algebra178 (1995), p. 653–664. Zbl0841.11015MR1359908
  2. [2] A. Borel – Linear algebraic groups, second éd., Graduate Texts in Math., vol. 126, Springer, 1991. Zbl0726.20030MR1102012
  3. [3] R. Elman, N. A. Karpenko & A. Merkurjev – The algebraic and geometric theory of quadratic forms, American Mathematical Society Colloquium Publications, vol. 56, Amer. Math. Soc., 2008. Zbl1165.11042MR2427530
  4. [4] D. W. Hoffmann – « Isotropy of 5 -dimensional quadratic forms over the function field of a quadric », in K -theory and algebraic geometry: connections with quadratic forms and division algebras (Santa Barbara, CA, 1992), Proc. Sympos. Pure Math., vol. 58, Amer. Math. Soc., 1995, p. 217–225. Zbl0824.11023MR1327299
  5. [5] —, « Similarity of quadratic forms and half-neighbors », J. Algebra204 (1998), p. 255–280. Zbl0922.11031MR1623969
  6. [6] O. T. Izhboldin – « Quadratic forms with maximal splitting », Algebra i Analiz9 (1997), p. 51–57. Zbl0892.11013MR1468546
  7. [7] —, « Fields of u -invariant 9 », Ann. of Math.154 (2001), p. 529–587. MR1884616
  8. [8] B. Kahn – « A descent problem for quadratic forms », Duke Math. J.80 (1995), p. 139–155. Zbl0858.11024MR1360614
  9. [9] N. A. Karpenko – « Izhboldin’s results on stably birational equivalence of quadrics », in Geometric methods in the algebraic theory of quadratic forms, Lecture Notes in Math., vol. 1835, Springer, 2004, p. 151–183. Zbl1045.11024MR2066519
  10. [10] N. A. Karpenko & A. Merkurjev – « Essential dimension of quadrics », Invent. Math.153 (2003), p. 361–372. Zbl1032.11015MR1992016
  11. [11] M. Knebusch – « Generic splitting of quadratic forms. I », Proc. London Math. Soc.33 (1976), p. 65–93. Zbl0351.15016MR412101
  12. [12] —, « Generic splitting of quadratic forms. II », Proc. London Math. Soc.34 (1977), p. 1–31. Zbl0359.15013MR427345
  13. [13] M.-A. Knus, A. Merkurjev, M. Rost & J.-P. Tignol – The book of involutions, American Mathematical Society Colloquium Publications, vol. 44, Amer. Math. Soc., 1998. Zbl0955.16001MR1632779
  14. [14] A. Laghribi – « Formes quadratiques de dimension 6 », Math. Nachr.204 (1999), p. 125–135. Zbl0927.11023MR1705142
  15. [15] T. Y. Lam – Introduction to quadratic forms over fields, Graduate Studies in Mathematics, vol. 67, Amer. Math. Soc., 2005. Zbl1068.11023MR2104929
  16. [16] S. Roussey – « Isotropie, corps de fonctions et équivalences birationnelles des formes quadratiques », Thèse, Université de Franche-Comté, 2005. 
  17. [17] B. Totaro – « The automorphism group of an affine quadric », Math. Proc. Cambridge Philos. Soc.143 (2007), p. 1–8. Zbl1124.14040MR2340971
  18. [18] A. Vishik – « Motives of quadrics with applications to the theory of quadratic forms », in Geometric methods in the algebraic theory of quadratic forms, Lecture Notes in Math., vol. 1835, Springer, 2004, p. 25–101. Zbl1047.11033MR2066515
  19. [19] A. R. Wadsworth & D. B. Shapiro – « On multiples of round and Pfister forms », Math. Z.157 (1977), p. 53–62. Zbl0355.15022MR506032

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.