Why Jordan algebras are natural in statistics: quadratic regression implies Wishart distributions
Bulletin de la Société Mathématique de France (2011)
- Volume: 139, Issue: 1, page 129-144
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topLetac, G., and Wesołowski, J.. "Why Jordan algebras are natural in statistics: quadratic regression implies Wishart distributions." Bulletin de la Société Mathématique de France 139.1 (2011): 129-144. <http://eudml.org/doc/272502>.
@article{Letac2011,
abstract = {If the space $\mathcal \{Q\}$ of quadratic forms in $\mathbb \{R\}^n$ is splitted in a direct sum $\mathcal \{Q\}_1\oplus \ldots \oplus \mathcal \{Q\}_k$ and if $X$ and $Y$ are independent random variables of $\mathbb \{R\}^n$, assume that there exist a real number $a$ such that $E(X|X+Y)=a(X+Y)$ and real distinct numbers $b_1,...,b_k$ such that $E(q(X)|X+Y)=b_iq(X+Y)$ for any $q$ in $\mathcal \{Q\}_i.$ We prove that this happens only when $k=2$, when $\mathbb \{R\}^n$ can be structured in a Euclidean Jordan algebra and when $X$ and $Y$ have Wishart distributions corresponding to this structure.},
author = {Letac, G., Wesołowski, J.},
journal = {Bulletin de la Société Mathématique de France},
keywords = {symmetric cones; random matrices; characterization of Wishart laws},
language = {eng},
number = {1},
pages = {129-144},
publisher = {Société mathématique de France},
title = {Why Jordan algebras are natural in statistics: quadratic regression implies Wishart distributions},
url = {http://eudml.org/doc/272502},
volume = {139},
year = {2011},
}
TY - JOUR
AU - Letac, G.
AU - Wesołowski, J.
TI - Why Jordan algebras are natural in statistics: quadratic regression implies Wishart distributions
JO - Bulletin de la Société Mathématique de France
PY - 2011
PB - Société mathématique de France
VL - 139
IS - 1
SP - 129
EP - 144
AB - If the space $\mathcal {Q}$ of quadratic forms in $\mathbb {R}^n$ is splitted in a direct sum $\mathcal {Q}_1\oplus \ldots \oplus \mathcal {Q}_k$ and if $X$ and $Y$ are independent random variables of $\mathbb {R}^n$, assume that there exist a real number $a$ such that $E(X|X+Y)=a(X+Y)$ and real distinct numbers $b_1,...,b_k$ such that $E(q(X)|X+Y)=b_iq(X+Y)$ for any $q$ in $\mathcal {Q}_i.$ We prove that this happens only when $k=2$, when $\mathbb {R}^n$ can be structured in a Euclidean Jordan algebra and when $X$ and $Y$ have Wishart distributions corresponding to this structure.
LA - eng
KW - symmetric cones; random matrices; characterization of Wishart laws
UR - http://eudml.org/doc/272502
ER -
References
top- [1] S. Andersson – « Invariant normal models », Ann. Statist.3 (1975), p. 132–154. Zbl0373.62029MR362703
- [2] D. J. Bartlett – « On the theory of the statistical regression », Proc. Royal Soc. Edinburgh53 (1933), p. 260–283. Zbl0008.02402JFM59.0513.04
- [3] K. Bobecka & J. Wesołowski – « The Lukacs-Olkin-Rubin theorem without invariance of the “quotient” », Studia Math.152 (2002), p. 147–160. Zbl0993.62043MR1916547
- [4] E. M. Carter – « Characterization and testing problems in the complex Wishart distribution », Thèse, University of Toronto, 1975. MR2627434
- [5] M. Casalis – « Les familles exponentielles à variance quadratique homogène sont des lois de Wishart sur un cône symétrique », C. R. Acad. Sci. Paris Sér. I Math.312 (1991), p. 537–540. Zbl0745.62051MR1099688
- [6] M. Casalis & G. Letac – « Characterization of the Jørgensen set in generalized linear models », Test3 (1994), p. 145–162. Zbl0815.62030MR1293112
- [7] —, « The Lukacs-Olkin-Rubin characterization of Wishart distributions on symmetric cones », Ann. Statist.24 (1996), p. 763–786. Zbl0906.62053MR1394987
- [8] M. L. Eaton – Multivariate statistics, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons Inc., 1983. Zbl0587.62097MR716321
- [9] J. Faraut & A. Korányi – Analysis on symmetric cones, Oxford Mathematical Monographs, The Clarendon Press Oxford Univ. Press, 1994, Oxford Science Publications. Zbl0841.43002MR1446489
- [10] N. R. Goodman – « Statistical analysis based on a certain multivariate complex Gaussian distribution. (An introduction) », Ann. Math. Statist.34 (1963), p. 152–177. Zbl0122.36903MR145618
- [11] S. Gyndikin – « Invariant generalized functions in homogeneous spaces », J. Funct. Anal. Appl.9 (1975), p. 50–52. Zbl0332.32022
- [12] S. T. Jensen – « Covariance hypotheses which are linear in both the covariance and the inverse covariance », Ann. Statist.16 (1988), p. 302–322. Zbl0653.62042MR924873
- [13] R. G. Laha & E. Lukacs – « On a problem connected with quadratic regression », Biometrika47 (1960), p. 335–343. Zbl0093.16002MR121922
- [14] M. Lassalle – « Algèbre de Jordan et ensemble de Wallach », Invent. Math.89 (1987), p. 375–393. Zbl0622.22008MR894386
- [15] G. Letac – « Le problème de la classification des familles exponentielles naturelles de ayant une fonction variance quadratique », in Probability measures on groups, IX (Oberwolfach, 1988), Lecture Notes in Math., vol. 1379, Springer, 1989, p. 192–216. Zbl0679.62010MR1020532
- [16] G. Letac & H. Massam – « Quadratic and inverse regressions for Wishart distributions », Ann. Statist.26 (1998), p. 573–595. Zbl1073.62536MR1626071
- [17] G. Letac & J. Wesołowski – « Laplace transforms which are negative powers of quadratic polynomials », Trans. Amer. Math. Soc.360 (2008), p. 6475–6496. Zbl1152.60019MR2434295
- [18] E. Lukacs – « A characterization of the gamma distribution », Ann. Math. Statist.26 (1955), p. 319–324. Zbl0065.11103MR69408
- [19] M. L. Mehta – Random matrices, third éd., Pure and Applied Mathematics (Amsterdam), vol. 142, Elsevier/Academic Press, Amsterdam, 2004. Zbl1107.15019MR2129906
- [20] R. J. Muirhead – Aspects of multivariate statistical theory, John Wiley & Sons Inc., 1982. Zbl0556.62028MR652932
- [21] I. Olkin & H. Rubin – « A characterization of the Wishart distribution », Ann. Math. Statist.33 (1962), p. 1272–1280. Zbl0111.34202MR141186
- [22] S. D. Peddada & D. S. P. Richards – « Proof of a conjecture of M. L. Eaton on the characteristic function of the Wishart distribution », Ann. Probab.19 (1991), p. 868–874. Zbl0728.62053MR1106290
- [23] D. N. Shanbhag – « The Davidson–Kendall problem and related results on the structure of the Wishart distribution », Austr. J. Statist. 30A (1988), p. 272–280. Zbl0694.62024
- [24] Y. H. Wang – « Extensions of Lukacs’ characterization of the gamma distribution », in Analytical methods in probability theory (Oberwolfach, 1980), Lecture Notes in Math., vol. 861, Springer, 1981, p. 166–177. Zbl0459.60012MR655271
- [25] J. Wishart – « The generalised product moment distribution in samples from a normal multivariate population », Biometrika 20A (1928), p. 32–52. JFM54.0565.02
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.