Entropy maximisation problem for quantum relativistic particles
Miguel Escobedo; Stéphane Mischler; Manuel A. Valle
Bulletin de la Société Mathématique de France (2005)
- Volume: 133, Issue: 1, page 87-120
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topEscobedo, Miguel, Mischler, Stéphane, and Valle, Manuel A.. "Entropy maximisation problem for quantum relativistic particles." Bulletin de la Société Mathématique de France 133.1 (2005): 87-120. <http://eudml.org/doc/272508>.
@article{Escobedo2005,
abstract = {The entropy of an ideal gas, both in the case of classical and quantum particles, is maximised when the number particle density, linear momentum and energy are fixed. The dispersion law energy to momentum is chosen as linear or quadratic, corresponding to non-relativistic or relativistic behaviour.},
author = {Escobedo, Miguel, Mischler, Stéphane, Valle, Manuel A.},
journal = {Bulletin de la Société Mathématique de France},
keywords = {entropy; maximisation problem; moments; bosons; fermions},
language = {eng},
number = {1},
pages = {87-120},
publisher = {Société mathématique de France},
title = {Entropy maximisation problem for quantum relativistic particles},
url = {http://eudml.org/doc/272508},
volume = {133},
year = {2005},
}
TY - JOUR
AU - Escobedo, Miguel
AU - Mischler, Stéphane
AU - Valle, Manuel A.
TI - Entropy maximisation problem for quantum relativistic particles
JO - Bulletin de la Société Mathématique de France
PY - 2005
PB - Société mathématique de France
VL - 133
IS - 1
SP - 87
EP - 120
AB - The entropy of an ideal gas, both in the case of classical and quantum particles, is maximised when the number particle density, linear momentum and energy are fixed. The dispersion law energy to momentum is chosen as linear or quadratic, corresponding to non-relativistic or relativistic behaviour.
LA - eng
KW - entropy; maximisation problem; moments; bosons; fermions
UR - http://eudml.org/doc/272508
ER -
References
top- [1] H. Andréasson – « Regularity of the gain term and strong convergence to equilibrium for the relativistic Boltzmann equation », SIAM J. Math. Anal. 27 (1996), no. 5, p. 1386–1405. Zbl0858.76072MR1402446
- [2] S. Bose – « Plancks Gesetz und Lichtquantenhypothese », Z. Phys.26 (1924), p. 178–181. JFM51.0732.04
- [3] R. Caflisch & C. Levermore – « Equilibrium for radiation in a homogeneous plasma », Phys. Fluids29 (1986), p. 748–752. MR828191
- [4] C. Cercignani – The Boltzmann equation and its applications, Applied Math. Sciences, vol. 67, Springer Verlag, 1988. Zbl0646.76001MR1313028
- [5] N. Chernikov – « Equilibrium distribution of the relativistic gas », Acta Phys. Polon.26 (1964), p. 1069–1092. MR180286
- [6] F. Demengel & R. Temam – « Convex functions of a measure and applications », Indiana Univ. Math. J. 33 (984), no. 5, p. 673–709. Zbl0581.46036MR756154
- [7] J. Dolbeault – « Kinetic models and quantum effects, a modified Boltzmann equation for Fermi-Dirac particles », Arch. Rat. Mech. Anal. 127, p. 101–131. Zbl0808.76084MR1288807
- [8] M. Dudyński & M. Ekiel-Jeżewska – « Global existence proof for relativistic Boltzmann equation », J. Statist. Phys. 66 (1992), no. 2,3, p. 991–1001. Zbl0899.76314MR1151987
- [9] A. Einstein – « Quantentheorie des einatomingen idealen Gases », Stiz. Presussische Akademie der Wissenschaften Phys-math. Klasse, Sitzungsberichte 23 (1925), p. 3–14. JFM51.0755.04
- [10] —, « Zur Quantentheorie des idealen Gases », Stiz. Presussische Akademie der Wissenschaften, Phys-math. Klasse, Sitzungsberichte 23 (1925), p. 18–25.
- [11] M. Escobedo & S. Mischler – « On a quantum Boltzmann equation for a gas of photons », J. Math. Pures Appl. 80 (2001), no. 55, p. 471–515. Zbl1134.82318MR1831432
- [12] M. Escobedo, S. Mischler & M. Valle – Homogeneous Boltzmann equation for quantum and relativistic particles, Electronic J. Diff. Eqns. Monographs, vol. 4, 2003, http://ejde.math.swt.edu. Zbl1103.82022
- [13] R. Glassey – The Cauchy Problem in Kinetic Theory, SIAM, Philadelphia, 1996. Zbl0858.76001MR1379589
- [14] R. Glassey & W. Strauss – « Asymptotic stability of the relativistic Maxwellian », Publ. Res. Inst. Math. Sciences, Kyoto University 29 (1993), no. 2. Zbl0776.45008MR1211782
- [15] —, « Asymptotic stability of the relativistic Maxwellian via fourteen moments », Transport Theory Stat. Physics24 (1995), p. 657–678. Zbl0882.35123MR1321370
- [16] S. Groot, W. van Leeuwen & C. van Weert – Relativistic kinetic theory, North Holland Publishing Company, 1980. MR635279
- [17] X. Lu – « A modified Boltzmann equation for Bose-Einstein particles: isotropic solutions and long time behavior », J. Statist. Phys. 98 (2000), no. 5,6, p. 1335–1394. Zbl1005.82026MR1751703
- [18] —, « On spatially homogeneous solutions of a modified Boltzmann equation for Fermi-Dirac particles », J. Statist. Phys. 105 (2001), no. 1,2, p. 353–388. Zbl1156.82380MR1861208
- [19] X. Lu & B. Wennberg – « On stability and strong convergence for the spatially homogeneous Boltzmann equation for Fermi-Dirac particles », Arch. Rat. Mech. Anal. 168 (2003), no. 1, p. 1–34. Zbl1044.76058MR2029003
- [20] G. Naber – The geometry of Minkowski spacetime, Springer Verlag, 1992. Zbl0757.53046MR1174969
- [21] R. Pathria – Statistical Mechanics, Pergamon Press, 1972. Zbl1209.82001
- [22] C. Villani – « A review of mathematical topics on collisional kinetic theory », Handbook of Mathematical Fluid Mechanics, Vol. I (S. Friedlander & D. Serre, éds.), North Holland, Amsterdam, 2002. Zbl1170.82369MR1942465
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.