Entropy maximisation problem for quantum relativistic particles
Miguel Escobedo; Stéphane Mischler; Manuel A. Valle
Bulletin de la Société Mathématique de France (2005)
- Volume: 133, Issue: 1, page 87-120
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] H. Andréasson – « Regularity of the gain term and strong convergence to equilibrium for the relativistic Boltzmann equation », SIAM J. Math. Anal. 27 (1996), no. 5, p. 1386–1405. Zbl0858.76072MR1402446
- [2] S. Bose – « Plancks Gesetz und Lichtquantenhypothese », Z. Phys.26 (1924), p. 178–181. JFM51.0732.04
- [3] R. Caflisch & C. Levermore – « Equilibrium for radiation in a homogeneous plasma », Phys. Fluids29 (1986), p. 748–752. MR828191
- [4] C. Cercignani – The Boltzmann equation and its applications, Applied Math. Sciences, vol. 67, Springer Verlag, 1988. Zbl0646.76001MR1313028
- [5] N. Chernikov – « Equilibrium distribution of the relativistic gas », Acta Phys. Polon.26 (1964), p. 1069–1092. MR180286
- [6] F. Demengel & R. Temam – « Convex functions of a measure and applications », Indiana Univ. Math. J. 33 (984), no. 5, p. 673–709. Zbl0581.46036MR756154
- [7] J. Dolbeault – « Kinetic models and quantum effects, a modified Boltzmann equation for Fermi-Dirac particles », Arch. Rat. Mech. Anal. 127, p. 101–131. Zbl0808.76084MR1288807
- [8] M. Dudyński & M. Ekiel-Jeżewska – « Global existence proof for relativistic Boltzmann equation », J. Statist. Phys. 66 (1992), no. 2,3, p. 991–1001. Zbl0899.76314MR1151987
- [9] A. Einstein – « Quantentheorie des einatomingen idealen Gases », Stiz. Presussische Akademie der Wissenschaften Phys-math. Klasse, Sitzungsberichte 23 (1925), p. 3–14. JFM51.0755.04
- [10] —, « Zur Quantentheorie des idealen Gases », Stiz. Presussische Akademie der Wissenschaften, Phys-math. Klasse, Sitzungsberichte 23 (1925), p. 18–25.
- [11] M. Escobedo & S. Mischler – « On a quantum Boltzmann equation for a gas of photons », J. Math. Pures Appl. 80 (2001), no. 55, p. 471–515. Zbl1134.82318MR1831432
- [12] M. Escobedo, S. Mischler & M. Valle – Homogeneous Boltzmann equation for quantum and relativistic particles, Electronic J. Diff. Eqns. Monographs, vol. 4, 2003, http://ejde.math.swt.edu. Zbl1103.82022
- [13] R. Glassey – The Cauchy Problem in Kinetic Theory, SIAM, Philadelphia, 1996. Zbl0858.76001MR1379589
- [14] R. Glassey & W. Strauss – « Asymptotic stability of the relativistic Maxwellian », Publ. Res. Inst. Math. Sciences, Kyoto University 29 (1993), no. 2. Zbl0776.45008MR1211782
- [15] —, « Asymptotic stability of the relativistic Maxwellian via fourteen moments », Transport Theory Stat. Physics24 (1995), p. 657–678. Zbl0882.35123MR1321370
- [16] S. Groot, W. van Leeuwen & C. van Weert – Relativistic kinetic theory, North Holland Publishing Company, 1980. MR635279
- [17] X. Lu – « A modified Boltzmann equation for Bose-Einstein particles: isotropic solutions and long time behavior », J. Statist. Phys. 98 (2000), no. 5,6, p. 1335–1394. Zbl1005.82026MR1751703
- [18] —, « On spatially homogeneous solutions of a modified Boltzmann equation for Fermi-Dirac particles », J. Statist. Phys. 105 (2001), no. 1,2, p. 353–388. Zbl1156.82380MR1861208
- [19] X. Lu & B. Wennberg – « On stability and strong convergence for the spatially homogeneous Boltzmann equation for Fermi-Dirac particles », Arch. Rat. Mech. Anal. 168 (2003), no. 1, p. 1–34. Zbl1044.76058MR2029003
- [20] G. Naber – The geometry of Minkowski spacetime, Springer Verlag, 1992. Zbl0757.53046MR1174969
- [21] R. Pathria – Statistical Mechanics, Pergamon Press, 1972. Zbl1209.82001
- [22] C. Villani – « A review of mathematical topics on collisional kinetic theory », Handbook of Mathematical Fluid Mechanics, Vol. I (S. Friedlander & D. Serre, éds.), North Holland, Amsterdam, 2002. Zbl1170.82369MR1942465