Entropy maximisation problem for quantum relativistic particles

Miguel Escobedo; Stéphane Mischler; Manuel A. Valle

Bulletin de la Société Mathématique de France (2005)

  • Volume: 133, Issue: 1, page 87-120
  • ISSN: 0037-9484

Abstract

top
The entropy of an ideal gas, both in the case of classical and quantum particles, is maximised when the number particle density, linear momentum and energy are fixed. The dispersion law energy to momentum is chosen as linear or quadratic, corresponding to non-relativistic or relativistic behaviour.

How to cite

top

Escobedo, Miguel, Mischler, Stéphane, and Valle, Manuel A.. "Entropy maximisation problem for quantum relativistic particles." Bulletin de la Société Mathématique de France 133.1 (2005): 87-120. <http://eudml.org/doc/272508>.

@article{Escobedo2005,
abstract = {The entropy of an ideal gas, both in the case of classical and quantum particles, is maximised when the number particle density, linear momentum and energy are fixed. The dispersion law energy to momentum is chosen as linear or quadratic, corresponding to non-relativistic or relativistic behaviour.},
author = {Escobedo, Miguel, Mischler, Stéphane, Valle, Manuel A.},
journal = {Bulletin de la Société Mathématique de France},
keywords = {entropy; maximisation problem; moments; bosons; fermions},
language = {eng},
number = {1},
pages = {87-120},
publisher = {Société mathématique de France},
title = {Entropy maximisation problem for quantum relativistic particles},
url = {http://eudml.org/doc/272508},
volume = {133},
year = {2005},
}

TY - JOUR
AU - Escobedo, Miguel
AU - Mischler, Stéphane
AU - Valle, Manuel A.
TI - Entropy maximisation problem for quantum relativistic particles
JO - Bulletin de la Société Mathématique de France
PY - 2005
PB - Société mathématique de France
VL - 133
IS - 1
SP - 87
EP - 120
AB - The entropy of an ideal gas, both in the case of classical and quantum particles, is maximised when the number particle density, linear momentum and energy are fixed. The dispersion law energy to momentum is chosen as linear or quadratic, corresponding to non-relativistic or relativistic behaviour.
LA - eng
KW - entropy; maximisation problem; moments; bosons; fermions
UR - http://eudml.org/doc/272508
ER -

References

top
  1. [1] H. Andréasson – « Regularity of the gain term and strong L 1 convergence to equilibrium for the relativistic Boltzmann equation », SIAM J. Math. Anal. 27 (1996), no. 5, p. 1386–1405. Zbl0858.76072MR1402446
  2. [2] S. Bose – « Plancks Gesetz und Lichtquantenhypothese », Z. Phys.26 (1924), p. 178–181. JFM51.0732.04
  3. [3] R. Caflisch & C. Levermore – « Equilibrium for radiation in a homogeneous plasma », Phys. Fluids29 (1986), p. 748–752. MR828191
  4. [4] C. Cercignani – The Boltzmann equation and its applications, Applied Math. Sciences, vol. 67, Springer Verlag, 1988. Zbl0646.76001MR1313028
  5. [5] N. Chernikov – « Equilibrium distribution of the relativistic gas », Acta Phys. Polon.26 (1964), p. 1069–1092. MR180286
  6. [6] F. Demengel & R. Temam – « Convex functions of a measure and applications », Indiana Univ. Math. J. 33 (984), no. 5, p. 673–709. Zbl0581.46036MR756154
  7. [7] J. Dolbeault – « Kinetic models and quantum effects, a modified Boltzmann equation for Fermi-Dirac particles », Arch. Rat. Mech. Anal. 127, p. 101–131. Zbl0808.76084MR1288807
  8. [8] M. Dudyński & M. Ekiel-Jeżewska – « Global existence proof for relativistic Boltzmann equation », J. Statist. Phys. 66 (1992), no. 2,3, p. 991–1001. Zbl0899.76314MR1151987
  9. [9] A. Einstein – « Quantentheorie des einatomingen idealen Gases », Stiz. Presussische Akademie der Wissenschaften Phys-math. Klasse, Sitzungsberichte 23 (1925), p. 3–14. JFM51.0755.04
  10. [10] —, « Zur Quantentheorie des idealen Gases », Stiz. Presussische Akademie der Wissenschaften, Phys-math. Klasse, Sitzungsberichte 23 (1925), p. 18–25. 
  11. [11] M. Escobedo & S. Mischler – « On a quantum Boltzmann equation for a gas of photons », J. Math. Pures Appl. 80 (2001), no. 55, p. 471–515. Zbl1134.82318MR1831432
  12. [12] M. Escobedo, S. Mischler & M. Valle – Homogeneous Boltzmann equation for quantum and relativistic particles, Electronic J. Diff. Eqns. Monographs, vol. 4, 2003, http://ejde.math.swt.edu. Zbl1103.82022
  13. [13] R. Glassey – The Cauchy Problem in Kinetic Theory, SIAM, Philadelphia, 1996. Zbl0858.76001MR1379589
  14. [14] R. Glassey & W. Strauss – « Asymptotic stability of the relativistic Maxwellian », Publ. Res. Inst. Math. Sciences, Kyoto University 29 (1993), no. 2. Zbl0776.45008MR1211782
  15. [15] —, « Asymptotic stability of the relativistic Maxwellian via fourteen moments », Transport Theory Stat. Physics24 (1995), p. 657–678. Zbl0882.35123MR1321370
  16. [16] S. Groot, W. van Leeuwen & C. van Weert – Relativistic kinetic theory, North Holland Publishing Company, 1980. MR635279
  17. [17] X. Lu – « A modified Boltzmann equation for Bose-Einstein particles: isotropic solutions and long time behavior », J. Statist. Phys. 98 (2000), no. 5,6, p. 1335–1394. Zbl1005.82026MR1751703
  18. [18] —, « On spatially homogeneous solutions of a modified Boltzmann equation for Fermi-Dirac particles », J. Statist. Phys. 105 (2001), no. 1,2, p. 353–388. Zbl1156.82380MR1861208
  19. [19] X. Lu & B. Wennberg – « On stability and strong convergence for the spatially homogeneous Boltzmann equation for Fermi-Dirac particles », Arch. Rat. Mech. Anal. 168 (2003), no. 1, p. 1–34. Zbl1044.76058MR2029003
  20. [20] G. Naber – The geometry of Minkowski spacetime, Springer Verlag, 1992. Zbl0757.53046MR1174969
  21. [21] R. Pathria – Statistical Mechanics, Pergamon Press, 1972. Zbl1209.82001
  22. [22] C. Villani – « A review of mathematical topics on collisional kinetic theory », Handbook of Mathematical Fluid Mechanics, Vol. I (S. Friedlander & D. Serre, éds.), North Holland, Amsterdam, 2002. Zbl1170.82369MR1942465

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.