On a certain generalization of spherical twists

Yukinobu Toda

Bulletin de la Société Mathématique de France (2007)

  • Volume: 135, Issue: 1, page 119-134
  • ISSN: 0037-9484

Abstract

top
This note gives a generalization of spherical twists, and describe the autoequivalences associated to certain non-spherical objects. Typically these are obtained by deforming the structure sheaves of ( 0 , - 2 ) -curves on threefolds, or deforming -objects introduced by D.Huybrechts and R.Thomas.

How to cite

top

Toda, Yukinobu. "On a certain generalization of spherical twists." Bulletin de la Société Mathématique de France 135.1 (2007): 119-134. <http://eudml.org/doc/272512>.

@article{Toda2007,
abstract = {This note gives a generalization of spherical twists, and describe the autoequivalences associated to certain non-spherical objects. Typically these are obtained by deforming the structure sheaves of $(0, -2)$-curves on threefolds, or deforming $\mathbb \{P\}$-objects introduced by D.Huybrechts and R.Thomas.},
author = {Toda, Yukinobu},
journal = {Bulletin de la Société Mathématique de France},
keywords = {derived categories; mirror symmetries},
language = {eng},
number = {1},
pages = {119-134},
publisher = {Société mathématique de France},
title = {On a certain generalization of spherical twists},
url = {http://eudml.org/doc/272512},
volume = {135},
year = {2007},
}

TY - JOUR
AU - Toda, Yukinobu
TI - On a certain generalization of spherical twists
JO - Bulletin de la Société Mathématique de France
PY - 2007
PB - Société mathématique de France
VL - 135
IS - 1
SP - 119
EP - 134
AB - This note gives a generalization of spherical twists, and describe the autoequivalences associated to certain non-spherical objects. Typically these are obtained by deforming the structure sheaves of $(0, -2)$-curves on threefolds, or deforming $\mathbb {P}$-objects introduced by D.Huybrechts and R.Thomas.
LA - eng
KW - derived categories; mirror symmetries
UR - http://eudml.org/doc/272512
ER -

References

top
  1. [1] A. Bondal & D. Orlov – « Semiorthogonal decomposition for algebraic varieties », preprint, 1995, arXiv:math.AG/9506012, p. 1–55. 
  2. [2] T. Bridgeland – « Equivalences of triangulated categories and Fourier-Mukai transforms », Bull. London Math. Soc.31 (1999), p. 25–34. Zbl0937.18012MR1651025
  3. [3] —, « Flops and derived categories », Invent. Math.147 (2002), p. 613–632. Zbl1085.14017MR1893007
  4. [4] J.-C. Chen – « Flops and equivalences of derived categories for three-folds with only Gorenstein singularities », J. Differential Geom.61 (2002), p. 227–261. Zbl1090.14003MR1972146
  5. [5] D. Huybrechts & R. Thomas – « -objects and autoequivalences of derived categories », preprint, 2005, arXiv:math.AG/0507040, p. 1–13. Zbl1094.14012MR2200048
  6. [6] M. Inaba – « Toward a definition of moduli of complexes of coherent sheaves on a projective scheme », J. Math. Kyoto Univ. 42-2 (2002), p. 317–329. Zbl1063.14013MR1966840
  7. [7] A. Ishii & H. Uehara – « Autoequivalences of derived categories on the minimal resolutions of A n -singularities on surfaces », preprint, 2004, arXiv:math.AG/0409151, p. 1–53. Zbl1097.14013
  8. [8] M. Kontsevich – « Homological algebra of mirror symmetry », in Proceedings of the International Congress of Mathematicians, Zurich (1994) vol. I, Birkhäuser, 1995, p. 120–139. Zbl0846.53021MR1403918
  9. [9] M. Lieblich – « Moduli of complexes on a proper morphism », J. Algebraic Geom.15 (2006), p. 175–206. Zbl1085.14015MR2177199
  10. [10] D. Ploog – « Autoequivalences of derived categories of smooth projective varieties », Thèse, 2005. 
  11. [11] P. Seidel – « Graded Lagrangian submanifolds », Bull. Soc. Math. France128 (2000), p. 103–149. Zbl0992.53059MR1765826
  12. [12] P. Seidel & R. Thomas – « Braid group actions on derived categories of coherent sheaves », Duke Math. J.108 (2001), p. 37–107. Zbl1092.14025MR1831820
  13. [13] R. Thomas – « A holomorphic casson invariant for Calabi-Yau 3-folds and bundles on K 3 -fibrations », J. Differential Geom.54 (2000), p. 367–438. Zbl1034.14015MR1818182
  14. [14] Y. Toda – « Stability conditions and crepant small resolutions », preprint, 2005, arXiv:math.AG/0512648, p. 1–25. Zbl1225.14030MR2425708

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.