Central limit theorems for the brownian motion on large unitary groups

Florent Benaych-Georges

Bulletin de la Société Mathématique de France (2011)

  • Volume: 139, Issue: 4, page 593-610
  • ISSN: 0037-9484

Abstract

top
In this paper, we are concerned with the large n limit of the distributions of linear combinations of the entries of a Brownian motion on the group of n × n unitary matrices. We prove that the process of such a linear combination converges to a Gaussian one. Various scales of time and various initial distributions are considered, giving rise to various limit processes, related to the geometric construction of the unitary Brownian motion. As an application, we propose a very short proof of the asymptotic Gaussian feature of the entries of Haar distributed random unitary matrices, a result already proved by Diaconiset al.

How to cite

top

Benaych-Georges, Florent. "Central limit theorems for the brownian motion on large unitary groups." Bulletin de la Société Mathématique de France 139.4 (2011): 593-610. <http://eudml.org/doc/272606>.

@article{Benaych2011,
abstract = {In this paper, we are concerned with the large $n$ limit of the distributions of linear combinations of the entries of a Brownian motion on the group of $n\times n$ unitary matrices. We prove that the process of such a linear combination converges to a Gaussian one. Various scales of time and various initial distributions are considered, giving rise to various limit processes, related to the geometric construction of the unitary Brownian motion. As an application, we propose a very short proof of the asymptotic Gaussian feature of the entries of Haar distributed random unitary matrices, a result already proved by Diaconiset al.},
author = {Benaych-Georges, Florent},
journal = {Bulletin de la Société Mathématique de France},
keywords = {unitary brownian motion; heat kernel; random matrices; central limit theorem; Haar measure},
language = {eng},
number = {4},
pages = {593-610},
publisher = {Société mathématique de France},
title = {Central limit theorems for the brownian motion on large unitary groups},
url = {http://eudml.org/doc/272606},
volume = {139},
year = {2011},
}

TY - JOUR
AU - Benaych-Georges, Florent
TI - Central limit theorems for the brownian motion on large unitary groups
JO - Bulletin de la Société Mathématique de France
PY - 2011
PB - Société mathématique de France
VL - 139
IS - 4
SP - 593
EP - 610
AB - In this paper, we are concerned with the large $n$ limit of the distributions of linear combinations of the entries of a Brownian motion on the group of $n\times n$ unitary matrices. We prove that the process of such a linear combination converges to a Gaussian one. Various scales of time and various initial distributions are considered, giving rise to various limit processes, related to the geometric construction of the unitary Brownian motion. As an application, we propose a very short proof of the asymptotic Gaussian feature of the entries of Haar distributed random unitary matrices, a result already proved by Diaconiset al.
LA - eng
KW - unitary brownian motion; heat kernel; random matrices; central limit theorem; Haar measure
UR - http://eudml.org/doc/272606
ER -

References

top
  1. [1] G. W. Anderson, A. Guionnet & O. Zeitouni – An introduction to random matrices, Cambridge Studies in Advanced Math., vol. 118, Cambridge Univ. Press, 2010. Zbl1184.15023MR2760897
  2. [2] F. Benaych-Georges & T. Lévy – « A continuous semigroup of notions of independence between the classical and the free one », Ann. Probab.39 (2011), p. 904–938. Zbl1222.46049MR2789579
  3. [3] P. Biane – « Free Brownian motion, free stochastic calculus and random matrices », in Free probability theory (Waterloo, ON, 1995), Fields Inst. Commun., vol. 12, Amer. Math. Soc., 1997, p. 1–19. Zbl0873.60056MR1426833
  4. [4] —, « Segal-Bargmann transform, functional calculus on matrix spaces and the theory of semi-circular and circular systems », J. Funct. Anal.144 (1997), p. 232–286. Zbl0889.47013MR1430721
  5. [5] É. Borel – « Sur les principes de la théorie cinétique des gaz », Ann. Sci. École Norm. Sup.23 (1906), p. 9–32. Zbl37.0944.01JFM37.0944.01
  6. [6] S. Chatterjee & E. Meckes – « Multivariate normal approximation using exchangeable pairs », ALEA Lat. Am. J. Probab. Math. Stat.4 (2008), p. 257–283. Zbl1162.60310MR2453473
  7. [7] L. H. Y. Chen – « Two central limit problems for dependent random variables », Z. Wahrsch. Verw. Gebiete43 (1978), p. 223–243. Zbl0364.60049MR517439
  8. [8] B. Collins, J. A. Mingo, P. Śniady & R. Speicher – « Second order freeness and fluctuations of random matrices. III. Higher order freeness and free cumulants », Doc. Math.12 (2007), p. 1–70. Zbl1123.46047MR2302524
  9. [9] B. Collins & M. Stolz – « Borel theorems for random matrices from the classical compact symmetric spaces », Ann. Probab.36 (2008), p. 876–895. Zbl1149.15016MR2408577
  10. [10] A. D’Aristotile, P. Diaconis & C. M. Newman – « Brownian motion and the classical groups », in Probability, statistics and their applications: papers in honor of Rabi Bhattacharya, IMS Lecture Notes Monogr. Ser., vol. 41, Inst. Math. Statist., 2003, p. 97–116. Zbl1056.60081MR1999417
  11. [11] A. Dembo & O. Zeitouni – Large deviations techniques and applications, second éd., Applications of Mathematics (New York), vol. 38, Springer, 1998. Zbl0896.60013MR1619036
  12. [12] N. Demni – « Free Jacobi process », J. Theoret. Probab.21 (2008), p. 118–143. Zbl1145.46041MR2384475
  13. [13] P. Diaconis & M. Shahshahani – « On the eigenvalues of random matrices », J. Appl. Probab. 31A (1994), p. 49–62. Zbl0807.15015MR1274717
  14. [14] P. Friz & H. Oberhauser – « Rough path limits of the Wong-Zakai type with a modified drift term », J. Funct. Anal.256 (2009), p. 3236–3256. Zbl1169.60011MR2504524
  15. [15] G. A. Hunt – « Semi-groups of measures on Lie groups », Trans. Amer. Math. Soc.81 (1956), p. 264–293. Zbl0073.12402MR79232
  16. [16] N. Ikeda & S. Watanabe – Stochastic differential equations and diffusion processes, second éd., North-Holland Mathematical Library, vol. 24, North-Holland Publishing Co., 1989. Zbl0684.60040MR1011252
  17. [17] T. Jiang – « How many entries of a typical orthogonal matrix can be approximated by independent normals? », Ann. Probab.34 (2006), p. 1497–1529. Zbl1107.15018MR2257653
  18. [18] T. Lévy – « Schur-Weyl duality and the heat kernel measure on the unitary group », Adv. Math.218 (2008), p. 537–575. Zbl1147.60053MR2407946
  19. [19] T. Lévy & M. Maïda – « Central limit theorem for the heat kernel measure on the unitary group », J. Funct. Anal.259 (2010), p. 3163–3204. Zbl1207.60018MR2727643
  20. [20] E. Meckes – « Linear functions on the classical matrix groups », Trans. Amer. Math. Soc.360 (2008), p. 5355–5366. Zbl1149.60017MR2415077
  21. [21] J. A. Mingo & A. Nica – « Annular noncrossing permutations and partitions, and second-order asymptotics for random matrices », Int. Math. Res. Not.2004 (2004), p. 1413–1460. Zbl1071.05006MR2052516
  22. [22] J. A. Mingo, P. Śniady & R. Speicher – « Second order freeness and fluctuations of random matrices. II. Unitary random matrices », Adv. Math.209 (2007), p. 212–240. Zbl1122.46045MR2294222
  23. [23] J. A. Mingo & R. Speicher – « Second order freeness and fluctuations of random matrices. I. Gaussian and Wishart matrices and cyclic Fock spaces », J. Funct. Anal.235 (2006), p. 226–270. Zbl1100.46040MR2216446
  24. [24] G. C. Papanicolaou, D. W. Stroock & S. R. S. Varadhan – « Martingale approach to some limit theorems », in Papers from the Duke Turbulence Conference (Duke Univ., Durham, N.C., 1976), Paper No. 6, Duke Univ. Math. Ser., vol. III, Duke Univ., 1977. Zbl0387.60067MR461684
  25. [25] E. M. Rains – « Combinatorial properties of Brownian motion on the compact classical groups », J. Theoret. Probab.10 (1997), p. 659–679. Zbl1002.60504MR1468398
  26. [26] L. C. G. Rogers & D. Williams – Diffusions, Markov processes, and martingales. Vol. 2, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons Inc., 1987. Zbl0627.60001MR921238
  27. [27] W. Schneller – « A short proof of Motoo’s combinatorial central limit theorem using Stein’s method », Probab. Theory Related Fields78 (1988), p. 249–252. Zbl0629.60025MR945112
  28. [28] D. W. Stroock & S. R. S. Varadhan – « Limit theorems for random walks on Lie groups », Sankhyā Ser. A35 (1973), p. 277–294. Zbl0299.60007MR517406
  29. [29] F. Xu – « A random matrix model from two-dimensional Yang-Mills theory », Comm. Math. Phys.190 (1997), p. 287–307. Zbl0937.81043MR1489573

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.