Invariance of the parity conjecture for -Selmer groups of elliptic curves in a -extension
Bulletin de la Société Mathématique de France (2011)
- Volume: 139, Issue: 4, page 571-592
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topde La Rochefoucauld, Thomas. "Invariance of the parity conjecture for $p$-Selmer groups of elliptic curves in a $D_{2p^{n}}$-extension." Bulletin de la Société Mathématique de France 139.4 (2011): 571-592. <http://eudml.org/doc/272747>.
@article{deLaRochefoucauld2011,
abstract = {We show a $p$-parity result in a $D_\{2p^\{n\}\}$-extension of number fields $L/K$ ($p\ge 5$) for the twist $1\oplus \eta \oplus \tau $: $W(E/K,1\oplus \eta \oplus \tau )=(-1)^\{\left\langle 1\oplus \eta \oplus \tau ,X_\{p\}(E/L)\right\rangle \}$, where $E$ is an elliptic curve over $K$, $\eta $ and $\tau $ are respectively the quadratic character and an irreductible representation of degree $2$ of $\mathrm \{Gal\}(L/K)=D_\{2p^\{n\}\}$, and $X_\{p\}(E/L)$ is the $p$-Selmer group. The main novelty is that we use a congruence result between $ \varepsilon _\{0\}$-factors (due to Deligne) for the determination of local root numbers in bad cases (places of additive reduction above 2 and 3). We also give applications to the $p$-parity conjecture (using the machinery of the Dokchitser brothers).},
author = {de La Rochefoucauld, Thomas},
journal = {Bulletin de la Société Mathématique de France},
keywords = {elliptic curves; Birch and Swinnerton-Dyer conjecture; parity conjecture; regulator constants; epsilon factors; root numbers},
language = {eng},
number = {4},
pages = {571-592},
publisher = {Société mathématique de France},
title = {Invariance of the parity conjecture for $p$-Selmer groups of elliptic curves in a $D_\{2p^\{n\}\}$-extension},
url = {http://eudml.org/doc/272747},
volume = {139},
year = {2011},
}
TY - JOUR
AU - de La Rochefoucauld, Thomas
TI - Invariance of the parity conjecture for $p$-Selmer groups of elliptic curves in a $D_{2p^{n}}$-extension
JO - Bulletin de la Société Mathématique de France
PY - 2011
PB - Société mathématique de France
VL - 139
IS - 4
SP - 571
EP - 592
AB - We show a $p$-parity result in a $D_{2p^{n}}$-extension of number fields $L/K$ ($p\ge 5$) for the twist $1\oplus \eta \oplus \tau $: $W(E/K,1\oplus \eta \oplus \tau )=(-1)^{\left\langle 1\oplus \eta \oplus \tau ,X_{p}(E/L)\right\rangle }$, where $E$ is an elliptic curve over $K$, $\eta $ and $\tau $ are respectively the quadratic character and an irreductible representation of degree $2$ of $\mathrm {Gal}(L/K)=D_{2p^{n}}$, and $X_{p}(E/L)$ is the $p$-Selmer group. The main novelty is that we use a congruence result between $ \varepsilon _{0}$-factors (due to Deligne) for the determination of local root numbers in bad cases (places of additive reduction above 2 and 3). We also give applications to the $p$-parity conjecture (using the machinery of the Dokchitser brothers).
LA - eng
KW - elliptic curves; Birch and Swinnerton-Dyer conjecture; parity conjecture; regulator constants; epsilon factors; root numbers
UR - http://eudml.org/doc/272747
ER -
References
top- [1] N. Billerey – « Semi-stabilité des courbes elliptiques », Dissertationes Math. (Rozprawy Mat.) 468 (2009). Zbl1238.11067MR2605449
- [2] P. Deligne – « Les constantes des équations fonctionnelles des fonctions », in Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Lecture Notes in Math., vol. 349, Springer, 1973, p. 501–597. Zbl0271.14011MR349635
- [3] T. Dokchitser & V. Dokchitser – « Regulator constants and the parity conjecture », Invent. Math.178 (2009), p. 23–71. Zbl1219.11083MR2534092
- [4] —, « Self-duality of Selmer groups », Math. Proc. Cambridge Philos. Soc.146 (2009), p. 257–267. Zbl1205.11065MR2475965
- [5] —, « Roots numbers and parity of ranks of elliptics curves », J. reine angew. Math. 658 (2011), p. 39–64. Zbl1314.11041MR2831512
- [6] A. Kraus – « Sur le défaut de semi-stabilité des courbes elliptiques à réduction additive », Manuscripta Math.69 (1990), p. 353–385. Zbl0792.14014MR1080288
- [7] J. Nekovář – « On the parity of ranks of Selmer groups. III », Doc. Math.12 (2007), p. 243–274. Zbl1201.11067MR2350290
- [8] —, « On the parity of ranks of Selmer groups. IV », Compos. Math.145 (2009), p. 1351–1359. Zbl1221.11150MR2575086
- [9] D. E. Rohrlich – « Elliptic curves and the Weil-Deligne group », in Elliptic curves and related topics, CRM Proc. Lecture Notes, vol. 4, Amer. Math. Soc., 1994, p. 125–157. Zbl0852.14008MR1260960
- [10] —, « Galois theory, elliptic curves, and root numbers », Compositio Math.100 (1996), p. 311–349. Zbl0860.11033MR1387669
- [11] —, « Galois invariance of local root numbers », Mathematische Annalen351 (2011), p. 979–1003. Zbl1260.11071MR2854120
- [12] J-P. Serre – Représentations linéaires des groupes finis, Hermann, 1998. Zbl0926.20003
- [13] J. H. Silverman – Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Math., vol. 151, Springer, 1994. Zbl0911.14015MR1312368
- [14] —, The arithmetic of elliptic curves, Graduate Texts in Math., vol. 106, Springer, 1994. Zbl0585.14026
- [15] J. Tate – « Number theoretic background », in Automorphic forms, representations and -functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., 1979, p. 3–26. Zbl0422.12007MR546607
- [16] J. P. Wintenberger – « Potential modularity of elliptic curves over totally real fields », appendix to [8].
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.