A least-squares method for the numerical solution of the Dirichlet problem for the elliptic monge − ampère equation in dimension two
Alexandre Caboussat; Roland Glowinski; Danny C. Sorensen
ESAIM: Control, Optimisation and Calculus of Variations (2013)
- Volume: 19, Issue: 3, page 780-810
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] A.D. Aleksandrov, Uniqueness conditions and estimates for the solution of the Dirichlet problem. Amer. Math. Soc. Trans.68 (1968) 89–119. Zbl0177.36802
- [2] J.D. Benamou, B.D. Froese and A.M. Oberman, Two numerical methods for the elliptic Monge − Ampère equation. ESAIM: M2AN 44 (2010) 737–758. Zbl1192.65138MR2683581
- [3] M. Bernadou, P.L. George, A. Hassim, P. Joly, P. Laug, A. Perronet, E. Saltel, D. Steer, G. Vanderborck and M. Vidrascu, Modulef, a modular library of finite elements. Technical report, INRIA (1988). Zbl0594.65080
- [4] P.B. Bochev and M.D. Gunzburger, Least-Squares Finite Element Methods. Springer-Verlag, New York (2009). Zbl1168.65067MR2490235
- [5] K. Boehmer, On finite element methods for fully nonlinear elliptic equations of second order. SIAM J. Numer. Anal.46 (2008) 1212–1249. Zbl1166.35322MR2390991
- [6] S.C. Brenner, T. Gudi, M. Neilan and L.-Y. Sung, c0 penalty methods for the fully nonlinear Monge − Ampere equation. Math. Comput. 80 (2011) 1979–1995. Zbl1228.65220MR2813346
- [7] S.C. Brenner and M. Neilan, Finite element approximations of the three dimensional Monge − Ampère equation. ESAIM: M2AN 46 (2012) 979–1001. Zbl1272.65088MR2916369
- [8] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, NewYork (1991). Zbl0788.73002MR1115205
- [9] A. Caboussat and R. Glowinski, Regularization methods for the numerical solution of the divergence equation ∇·u = f. J. Comput. Math. 30 (2012) 354–380. Zbl1274.65178MR2965988
- [10] X. Cabré, Topics in regularity and qualitative properties of solutions of nonlinear elliptic equations. Discrete Contin. Dyn. Systems8 (2002) 289–302. Zbl1003.35053MR1897687
- [11] L.A. Caffarelli, Nonlinear elliptic theory and the Monge − Ampère equation, in Proc. of the International Congress of Mathematicians. Higher Education Press, Beijing (2002) 179–187. Zbl1040.35018MR1989184
- [12] L.A. Caffarelli and X. Cabré, Fully Nonlinear Elliptic Equations. American Mathematical Society, Providence, RI (1995). Zbl0834.35002MR1351007
- [13] L.A. Caffarelli and R. Glowinski, Numerical solution of the Dirichlet problem for a Pucci equation in dimension two. Application to homogenization. J. Numer. Math. 16 (2008) 185–216. Zbl1155.65097MR2484327
- [14] L.A. Caffarelli, S.A. Kochenkgin and V.I. Olicker, On the numerical solution of reflector design with given far field scattering data, in Monge − Ampère Equation: Application to Geometry and Optimization, American Mathematical Society, Providence, RI (1999) 13–32. Zbl0917.65104MR1660740
- [15] M.G. Crandall, H. Ishii and P.-L. Lions, User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc.27 (1992) 1–67. Zbl0755.35015MR1118699
- [16] E.J. Dean and R. Glowinski, Numerical solution of the two-dimensional elliptic Monge − Ampère equation with Dirichlet boundary conditions: an augmented Lagrangian approach. C. R. Acad. Sci. Paris, Ser. I 336 (2003) 779–784. Zbl1028.65120MR1989280
- [17] E.J. Dean and R. Glowinski, Numerical solution of the two-dimensional elliptic Monge − Ampère equation with Dirichlet boundary conditions: a least-squares approach. C. R. Acad. Sci. Paris, Ser. I 339 (2004) 887–892. Zbl1063.65121MR2111728
- [18] E.J. Dean and R. Glowinski, Numerical solution of a two-dimensional elliptic Pucci’s equation with Dirichlet boundary conditions: a least-squares approach. C. R. Acad. Sci. Paris, Ser. I 341 (2005) 374–380. Zbl1081.65543MR2169156
- [19] E.J. Dean and R. Glowinski, An augmented Lagrangian approach to the numerical solution of the Dirichlet problem for the elliptic Monge − Ampère equation in two dimensions. Electronic Transactions in Numerical Analysis 22 (2006) 71–96. Zbl1112.65119MR2208483
- [20] E.J. Dean and R. Glowinski, Numerical methods for fully nonlinear elliptic equations of the Monge − Ampère type. Comput. Meth. Appl. Mech. Engrg. 195 (2006) 1344–1386. Zbl1119.65116MR2203972
- [21] E.J. Dean and R. Glowinski, On the numerical solution of the elliptic Monge − Ampère equation in dimension two: A least-squares approach, in Partial Differential Equations: Modeling and Numerical Simulation, vol. 16 of Comput. Methods Appl. Sci., edited by R. Glowinski and P. Neittaanmäki. Springer (2008) 43–63. Zbl1152.65479MR2484684
- [22] E.J. Dean, R. Glowinski and T.W. Pan, Operator-splitting methods and applications to the direct numerical simulation of particulate flow and to the solution of the elliptic Monge − Ampère equation. in Control and Boundary Analysis, edited by J.P. Zolésio J. Cagnol, CRC Boca Raton, FLA (2005) 1–27. Zbl1188.65115MR2144346
- [23] E.J. Dean, R. Glowinski and D. Trevas, An approximate factorization/least squares solution method for a mixed finite element approximation of the Cahn-Hilliard equation. Jpn J. Ind. Appl. Math.13 (1996) 495–517. Zbl0874.65073MR1415067
- [24] X. Feng and M. Neilan, Mixed finite element methods for the fully nonlinear Monge − Ampère equation based on the vanishing moment method. SIAM J. Numer. Anal. 47 (2009) 1226–1250. Zbl1195.65170MR2485451
- [25] X. Feng and M. Neilan, Vanishing moment method and moment solutions of second order fully nonlinear partial differential equations. J. Sci. Comput.38 (2009) 74–98. Zbl1203.65252MR2472219
- [26] B.D. Froese and A.M. Oberman, Convergent finite difference solvers for viscosity solutions of the elliptic Monge − Ampère equation in dimensions two and higher. SIAM J. Numer. Anal. 49 (2011) 1692–1715. Zbl1255.65195MR2831067
- [27] B.D. Froese and A.M. Oberman, Fast finite difference solvers for singular solutions of the elliptic Monge − Ampère equation. J. Comput. Phys. 230 (2011) 818–834. Zbl1206.65242MR2745457
- [28] C. Geuzaine and J.-F. Remacle, Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Meth. Eng.79 (2009) 1309–1331. Zbl1176.74181MR2566786
- [29] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2001). Zbl1042.35002MR1814364
- [30] R. Glowinski, Finite Element Methods For Incompressible Viscous Flow, Handbook of Numerical Analysis, edited by P.G. Ciarlet, J.L. Lions. Elsevier, Amsterdam IX (2003) 3–1176. Zbl1040.76001MR2009826
- [31] R. Glowinski, Numerical Methods for Nonlinear Variational Problems. 2nd edition, Springer-Verlag, New York, NY (2008). Zbl0536.65054MR2423313
- [32] R. Glowinski, Numerical methods for fully nonlinear elliptic equations. in Invited Lectures, 6th Int. Congress on Industrial and Applied Mathematics, Zürich, Switzerland, 16-20 July 2007. EMS (2009) 155–192. Zbl1179.65146MR2588593
- [33] R. Glowinski, E.J. Dean, G. Guidoboni, H.L. Juarez and T.W. Pan, Applications of operator-splitting methods to the direct numerical simulation of particulate and free surface flows and to the numerical solution of the two-dimensional Monge − Ampère equation. Jpn J. Ind. Appl. Math. 25 (2008) 1–63. Zbl1141.76043MR2410542
- [34] R. Glowinski, J.-L. Lions and J.W. He, Exact and Approximate Controllability for Distributed Parameter Systems: A Numerical Approach. Encyclopedia of Mathematics and its Applications. Cambridge University Press (2008). Zbl0838.93014
- [35] R. Glowinski, D. Marini and M. Vidrascu, Finite-element approximations and iterative solutions of a fourth-order elliptic variational inequality. IMA J. Numer. Anal.4 (1984) 127–167. Zbl0544.65043MR744475
- [36] R. Glowinski and O. Pironneau, Numerical methods for the first bi-harmonic equation and for the two-dimensional Stokes problem. SIAM Rev.17 (1979) 167–212. Zbl0427.65073MR524511
- [37] C.E. Gutiérrez, The Monge − Ampère Equation. Birkhaüser, Boston (2001). Zbl0989.35052
- [38] T.J.R. Hughes, L. Franca and M. Balestra, A new finite element formulation for computational fluid dynamics: V. circumventing the Babuska-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolation. Comput. Methods Appl. Mech. Engrg. 59 (1986) 85–100. Zbl0622.76077MR868143
- [39] H. Ishii and P.-L. Lions, Viscosity solutions of fully nonlinear second-order elliptic partial differential equations. J. Differ. Eq.83 (1990) 26–78. Zbl0708.35031MR1031377
- [40] G. Loeper and F. Rapetti, Numerical solution of the Monge − Ampère equation by a Newton’s algorithm. C. R. Math. Acad. Sci. Paris 340 (2005) 319–324. Zbl1067.65119MR2121899
- [41] B. Mohammadi, Optimal transport, shape optimization and global minimization. C. R. Acad Sci Paris, Ser. I 351 (2007) 591–596. Zbl1115.65075MR2323748
- [42] M. Neilan, A nonconforming Morley finite element method for the fully nonlinear Monge − Ampère equation. Numer. Math. 115 (2010) 371–394. Zbl1201.65209MR2640051
- [43] A. Oberman, Wide stencil finite difference schemes for the elliptic Monge − Ampère equations and functions of the eigenvalues of the Hessian. Discr. Contin. Dyn. Syst. B 10 (2008) 221–238. Zbl1145.65085MR2399429
- [44] V.I. Oliker and L.D. Prussner, On the numerical solution of the equation z xx z yy − z xy 2 = f and its discretization, I. Numer. Math. 54 (1988) 271–293. Zbl0659.65116MR971703
- [45] M. Picasso, F. Alauzet, H. Borouchaki and P.-L. George, A numerical study of some Hessian recovery techniques on isotropic and anisotropic meshes. SIAM J. Sci. Comput.33 (2011) 1058–1076. Zbl1232.65147MR2800564
- [46] A.V. Pogorelov, Monge − Ampère Equations of Elliptic Type. P. Noordhooff, Ltd, Groningen, Netherlands (1964). Zbl0133.04902
- [47] L. Reinhart, On the numerical analysis of the Von Kármán equation: mixed finite element approximation and continuation techniques. Numer. Math.39 (1982) 371–404. Zbl0503.73048MR678742
- [48] D.C. Sorensen and R. Glowinski, A quadratically constrained minimization problem arising from PDE of Monge − Ampère type. Numer. Algor. 53 (2010) 53–66. Zbl1187.65073MR2566127
- [49] A.N. Tychonoff, The regularization of incorrectly posed problems. Doklady Akad. Nauk. SSSR153 (1963) 42–52. Zbl0183.11601MR162378
- [50] V. Zheligovsky, O. Podvigina and U. Frisch, The Monge − Ampère equation: Various forms and numerical solution. J. Comput. Phys. 229 (2010) 5043–5061. Zbl1194.65141MR2643642