A least-squares method for the numerical solution of the Dirichlet problem for the elliptic monge − ampère equation in dimension two
Alexandre Caboussat; Roland Glowinski; Danny C. Sorensen
ESAIM: Control, Optimisation and Calculus of Variations (2013)
- Volume: 19, Issue: 3, page 780-810
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topCaboussat, Alexandre, Glowinski, Roland, and Sorensen, Danny C.. "A least-squares method for the numerical solution of the Dirichlet problem for the elliptic monge − ampère equation in dimension two." ESAIM: Control, Optimisation and Calculus of Variations 19.3 (2013): 780-810. <http://eudml.org/doc/272752>.
@article{Caboussat2013,
abstract = {We address in this article the computation of the convex solutions of the Dirichlet problem for the real elliptic Monge − Ampère equation for general convex domains in two dimensions. The method we discuss combines a least-squares formulation with a relaxation method. This approach leads to a sequence of Poisson − Dirichlet problems and another sequence of low dimensional algebraic eigenvalue problems of a new type. Mixed finite element approximations with a smoothing procedure are used for the computer implementation of our least-squares/relaxation methodology. Domains with curved boundaries are easily accommodated. Numerical experiments show the convergence of the computed solutions to their continuous counterparts when such solutions exist. On the other hand, when classical solutions do not exist, our methodology produces solutions in a least-squares sense.},
author = {Caboussat, Alexandre, Glowinski, Roland, Sorensen, Danny C.},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Monge − ampère equation; least-squares method; biharmonic problem; conjugate gradient method; quadratic constraint minimization; mixed finite element methods; Dirichlet problem; elliptic Monge-Ampère equation; numerical experiments; convergence},
language = {eng},
number = {3},
pages = {780-810},
publisher = {EDP-Sciences},
title = {A least-squares method for the numerical solution of the Dirichlet problem for the elliptic monge − ampère equation in dimension two},
url = {http://eudml.org/doc/272752},
volume = {19},
year = {2013},
}
TY - JOUR
AU - Caboussat, Alexandre
AU - Glowinski, Roland
AU - Sorensen, Danny C.
TI - A least-squares method for the numerical solution of the Dirichlet problem for the elliptic monge − ampère equation in dimension two
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2013
PB - EDP-Sciences
VL - 19
IS - 3
SP - 780
EP - 810
AB - We address in this article the computation of the convex solutions of the Dirichlet problem for the real elliptic Monge − Ampère equation for general convex domains in two dimensions. The method we discuss combines a least-squares formulation with a relaxation method. This approach leads to a sequence of Poisson − Dirichlet problems and another sequence of low dimensional algebraic eigenvalue problems of a new type. Mixed finite element approximations with a smoothing procedure are used for the computer implementation of our least-squares/relaxation methodology. Domains with curved boundaries are easily accommodated. Numerical experiments show the convergence of the computed solutions to their continuous counterparts when such solutions exist. On the other hand, when classical solutions do not exist, our methodology produces solutions in a least-squares sense.
LA - eng
KW - Monge − ampère equation; least-squares method; biharmonic problem; conjugate gradient method; quadratic constraint minimization; mixed finite element methods; Dirichlet problem; elliptic Monge-Ampère equation; numerical experiments; convergence
UR - http://eudml.org/doc/272752
ER -
References
top- [1] A.D. Aleksandrov, Uniqueness conditions and estimates for the solution of the Dirichlet problem. Amer. Math. Soc. Trans.68 (1968) 89–119. Zbl0177.36802
- [2] J.D. Benamou, B.D. Froese and A.M. Oberman, Two numerical methods for the elliptic Monge − Ampère equation. ESAIM: M2AN 44 (2010) 737–758. Zbl1192.65138MR2683581
- [3] M. Bernadou, P.L. George, A. Hassim, P. Joly, P. Laug, A. Perronet, E. Saltel, D. Steer, G. Vanderborck and M. Vidrascu, Modulef, a modular library of finite elements. Technical report, INRIA (1988). Zbl0594.65080
- [4] P.B. Bochev and M.D. Gunzburger, Least-Squares Finite Element Methods. Springer-Verlag, New York (2009). Zbl1168.65067MR2490235
- [5] K. Boehmer, On finite element methods for fully nonlinear elliptic equations of second order. SIAM J. Numer. Anal.46 (2008) 1212–1249. Zbl1166.35322MR2390991
- [6] S.C. Brenner, T. Gudi, M. Neilan and L.-Y. Sung, c0 penalty methods for the fully nonlinear Monge − Ampere equation. Math. Comput. 80 (2011) 1979–1995. Zbl1228.65220MR2813346
- [7] S.C. Brenner and M. Neilan, Finite element approximations of the three dimensional Monge − Ampère equation. ESAIM: M2AN 46 (2012) 979–1001. Zbl1272.65088MR2916369
- [8] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, NewYork (1991). Zbl0788.73002MR1115205
- [9] A. Caboussat and R. Glowinski, Regularization methods for the numerical solution of the divergence equation ∇·u = f. J. Comput. Math. 30 (2012) 354–380. Zbl1274.65178MR2965988
- [10] X. Cabré, Topics in regularity and qualitative properties of solutions of nonlinear elliptic equations. Discrete Contin. Dyn. Systems8 (2002) 289–302. Zbl1003.35053MR1897687
- [11] L.A. Caffarelli, Nonlinear elliptic theory and the Monge − Ampère equation, in Proc. of the International Congress of Mathematicians. Higher Education Press, Beijing (2002) 179–187. Zbl1040.35018MR1989184
- [12] L.A. Caffarelli and X. Cabré, Fully Nonlinear Elliptic Equations. American Mathematical Society, Providence, RI (1995). Zbl0834.35002MR1351007
- [13] L.A. Caffarelli and R. Glowinski, Numerical solution of the Dirichlet problem for a Pucci equation in dimension two. Application to homogenization. J. Numer. Math. 16 (2008) 185–216. Zbl1155.65097MR2484327
- [14] L.A. Caffarelli, S.A. Kochenkgin and V.I. Olicker, On the numerical solution of reflector design with given far field scattering data, in Monge − Ampère Equation: Application to Geometry and Optimization, American Mathematical Society, Providence, RI (1999) 13–32. Zbl0917.65104MR1660740
- [15] M.G. Crandall, H. Ishii and P.-L. Lions, User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc.27 (1992) 1–67. Zbl0755.35015MR1118699
- [16] E.J. Dean and R. Glowinski, Numerical solution of the two-dimensional elliptic Monge − Ampère equation with Dirichlet boundary conditions: an augmented Lagrangian approach. C. R. Acad. Sci. Paris, Ser. I 336 (2003) 779–784. Zbl1028.65120MR1989280
- [17] E.J. Dean and R. Glowinski, Numerical solution of the two-dimensional elliptic Monge − Ampère equation with Dirichlet boundary conditions: a least-squares approach. C. R. Acad. Sci. Paris, Ser. I 339 (2004) 887–892. Zbl1063.65121MR2111728
- [18] E.J. Dean and R. Glowinski, Numerical solution of a two-dimensional elliptic Pucci’s equation with Dirichlet boundary conditions: a least-squares approach. C. R. Acad. Sci. Paris, Ser. I 341 (2005) 374–380. Zbl1081.65543MR2169156
- [19] E.J. Dean and R. Glowinski, An augmented Lagrangian approach to the numerical solution of the Dirichlet problem for the elliptic Monge − Ampère equation in two dimensions. Electronic Transactions in Numerical Analysis 22 (2006) 71–96. Zbl1112.65119MR2208483
- [20] E.J. Dean and R. Glowinski, Numerical methods for fully nonlinear elliptic equations of the Monge − Ampère type. Comput. Meth. Appl. Mech. Engrg. 195 (2006) 1344–1386. Zbl1119.65116MR2203972
- [21] E.J. Dean and R. Glowinski, On the numerical solution of the elliptic Monge − Ampère equation in dimension two: A least-squares approach, in Partial Differential Equations: Modeling and Numerical Simulation, vol. 16 of Comput. Methods Appl. Sci., edited by R. Glowinski and P. Neittaanmäki. Springer (2008) 43–63. Zbl1152.65479MR2484684
- [22] E.J. Dean, R. Glowinski and T.W. Pan, Operator-splitting methods and applications to the direct numerical simulation of particulate flow and to the solution of the elliptic Monge − Ampère equation. in Control and Boundary Analysis, edited by J.P. Zolésio J. Cagnol, CRC Boca Raton, FLA (2005) 1–27. Zbl1188.65115MR2144346
- [23] E.J. Dean, R. Glowinski and D. Trevas, An approximate factorization/least squares solution method for a mixed finite element approximation of the Cahn-Hilliard equation. Jpn J. Ind. Appl. Math.13 (1996) 495–517. Zbl0874.65073MR1415067
- [24] X. Feng and M. Neilan, Mixed finite element methods for the fully nonlinear Monge − Ampère equation based on the vanishing moment method. SIAM J. Numer. Anal. 47 (2009) 1226–1250. Zbl1195.65170MR2485451
- [25] X. Feng and M. Neilan, Vanishing moment method and moment solutions of second order fully nonlinear partial differential equations. J. Sci. Comput.38 (2009) 74–98. Zbl1203.65252MR2472219
- [26] B.D. Froese and A.M. Oberman, Convergent finite difference solvers for viscosity solutions of the elliptic Monge − Ampère equation in dimensions two and higher. SIAM J. Numer. Anal. 49 (2011) 1692–1715. Zbl1255.65195MR2831067
- [27] B.D. Froese and A.M. Oberman, Fast finite difference solvers for singular solutions of the elliptic Monge − Ampère equation. J. Comput. Phys. 230 (2011) 818–834. Zbl1206.65242MR2745457
- [28] C. Geuzaine and J.-F. Remacle, Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Meth. Eng.79 (2009) 1309–1331. Zbl1176.74181MR2566786
- [29] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2001). Zbl1042.35002MR1814364
- [30] R. Glowinski, Finite Element Methods For Incompressible Viscous Flow, Handbook of Numerical Analysis, edited by P.G. Ciarlet, J.L. Lions. Elsevier, Amsterdam IX (2003) 3–1176. Zbl1040.76001MR2009826
- [31] R. Glowinski, Numerical Methods for Nonlinear Variational Problems. 2nd edition, Springer-Verlag, New York, NY (2008). Zbl0536.65054MR2423313
- [32] R. Glowinski, Numerical methods for fully nonlinear elliptic equations. in Invited Lectures, 6th Int. Congress on Industrial and Applied Mathematics, Zürich, Switzerland, 16-20 July 2007. EMS (2009) 155–192. Zbl1179.65146MR2588593
- [33] R. Glowinski, E.J. Dean, G. Guidoboni, H.L. Juarez and T.W. Pan, Applications of operator-splitting methods to the direct numerical simulation of particulate and free surface flows and to the numerical solution of the two-dimensional Monge − Ampère equation. Jpn J. Ind. Appl. Math. 25 (2008) 1–63. Zbl1141.76043MR2410542
- [34] R. Glowinski, J.-L. Lions and J.W. He, Exact and Approximate Controllability for Distributed Parameter Systems: A Numerical Approach. Encyclopedia of Mathematics and its Applications. Cambridge University Press (2008). Zbl0838.93014
- [35] R. Glowinski, D. Marini and M. Vidrascu, Finite-element approximations and iterative solutions of a fourth-order elliptic variational inequality. IMA J. Numer. Anal.4 (1984) 127–167. Zbl0544.65043MR744475
- [36] R. Glowinski and O. Pironneau, Numerical methods for the first bi-harmonic equation and for the two-dimensional Stokes problem. SIAM Rev.17 (1979) 167–212. Zbl0427.65073MR524511
- [37] C.E. Gutiérrez, The Monge − Ampère Equation. Birkhaüser, Boston (2001). Zbl0989.35052
- [38] T.J.R. Hughes, L. Franca and M. Balestra, A new finite element formulation for computational fluid dynamics: V. circumventing the Babuska-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolation. Comput. Methods Appl. Mech. Engrg. 59 (1986) 85–100. Zbl0622.76077MR868143
- [39] H. Ishii and P.-L. Lions, Viscosity solutions of fully nonlinear second-order elliptic partial differential equations. J. Differ. Eq.83 (1990) 26–78. Zbl0708.35031MR1031377
- [40] G. Loeper and F. Rapetti, Numerical solution of the Monge − Ampère equation by a Newton’s algorithm. C. R. Math. Acad. Sci. Paris 340 (2005) 319–324. Zbl1067.65119MR2121899
- [41] B. Mohammadi, Optimal transport, shape optimization and global minimization. C. R. Acad Sci Paris, Ser. I 351 (2007) 591–596. Zbl1115.65075MR2323748
- [42] M. Neilan, A nonconforming Morley finite element method for the fully nonlinear Monge − Ampère equation. Numer. Math. 115 (2010) 371–394. Zbl1201.65209MR2640051
- [43] A. Oberman, Wide stencil finite difference schemes for the elliptic Monge − Ampère equations and functions of the eigenvalues of the Hessian. Discr. Contin. Dyn. Syst. B 10 (2008) 221–238. Zbl1145.65085MR2399429
- [44] V.I. Oliker and L.D. Prussner, On the numerical solution of the equation z xx z yy − z xy 2 = f and its discretization, I. Numer. Math. 54 (1988) 271–293. Zbl0659.65116MR971703
- [45] M. Picasso, F. Alauzet, H. Borouchaki and P.-L. George, A numerical study of some Hessian recovery techniques on isotropic and anisotropic meshes. SIAM J. Sci. Comput.33 (2011) 1058–1076. Zbl1232.65147MR2800564
- [46] A.V. Pogorelov, Monge − Ampère Equations of Elliptic Type. P. Noordhooff, Ltd, Groningen, Netherlands (1964). Zbl0133.04902
- [47] L. Reinhart, On the numerical analysis of the Von Kármán equation: mixed finite element approximation and continuation techniques. Numer. Math.39 (1982) 371–404. Zbl0503.73048MR678742
- [48] D.C. Sorensen and R. Glowinski, A quadratically constrained minimization problem arising from PDE of Monge − Ampère type. Numer. Algor. 53 (2010) 53–66. Zbl1187.65073MR2566127
- [49] A.N. Tychonoff, The regularization of incorrectly posed problems. Doklady Akad. Nauk. SSSR153 (1963) 42–52. Zbl0183.11601MR162378
- [50] V. Zheligovsky, O. Podvigina and U. Frisch, The Monge − Ampère equation: Various forms and numerical solution. J. Comput. Phys. 229 (2010) 5043–5061. Zbl1194.65141MR2643642
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.