Pointwise estimates and rigidity results for entire solutions of nonlinear elliptic pde’s
Alberto Farina; Enrico Valdinoci
ESAIM: Control, Optimisation and Calculus of Variations (2013)
- Volume: 19, Issue: 2, page 616-627
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topFarina, Alberto, and Valdinoci, Enrico. "Pointwise estimates and rigidity results for entire solutions of nonlinear elliptic pde’s." ESAIM: Control, Optimisation and Calculus of Variations 19.2 (2013): 616-627. <http://eudml.org/doc/272759>.
@article{Farina2013,
abstract = {We prove pointwise gradient bounds for entire solutions of pde’s of the form ℒu(x) = ψ(x, u(x), ∇u(x)), where ℒ is an elliptic operator (possibly singular or degenerate). Thus, we obtain some Liouville type rigidity results. Some classical results of J. Serrin are also recovered as particular cases of our approach.},
author = {Farina, Alberto, Valdinoci, Enrico},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {gradient bounds; P-function estimates; rigidity results; -function estimates},
language = {eng},
number = {2},
pages = {616-627},
publisher = {EDP-Sciences},
title = {Pointwise estimates and rigidity results for entire solutions of nonlinear elliptic pde’s},
url = {http://eudml.org/doc/272759},
volume = {19},
year = {2013},
}
TY - JOUR
AU - Farina, Alberto
AU - Valdinoci, Enrico
TI - Pointwise estimates and rigidity results for entire solutions of nonlinear elliptic pde’s
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2013
PB - EDP-Sciences
VL - 19
IS - 2
SP - 616
EP - 627
AB - We prove pointwise gradient bounds for entire solutions of pde’s of the form ℒu(x) = ψ(x, u(x), ∇u(x)), where ℒ is an elliptic operator (possibly singular or degenerate). Thus, we obtain some Liouville type rigidity results. Some classical results of J. Serrin are also recovered as particular cases of our approach.
LA - eng
KW - gradient bounds; P-function estimates; rigidity results; -function estimates
UR - http://eudml.org/doc/272759
ER -
References
top- [1] S. Bernstein, Über ein geometrisches theorem und seine anwendung auf die partiellen differentialgleichungen vom elliptischen Typus. Math. Z.26 (1927) 551–558. Zbl53.0670.01MR1544873JFM53.0670.01
- [2] L. Caffarelli, N. Garofalo and F. Segala, A gradient bound for entire solutions of quasi-linear equations and its consequences. Commun. Pure Appl. Math.47 (1994) 1457–1473. Zbl0819.35016MR1296785
- [3] D. Castellaneta, A. Farina and E. Valdinoci, A pointwise gradient estimate for solutions of singular and degenerate PDEs in possibly unbounded domains with nonnegative mean curvature. Commun. Pure Appl. Anal.11 (2012) 1983–2003. Zbl1266.35097MR2911121
- [4] D.G. De Figueiredo and P. Ubilla, Superlinear systems of second-order ODE’s. Nonlinear Anal.68 (2008) 1765–1773. Zbl1137.34320MR2388850
- [5] D.G. De Figueiredo, J. Sánchez and P. Ubilla, Quasilinear equations with dependence on the gradient. Nonlinear Anal.71 (2009) 4862–4868. Zbl1178.34027MR2548718
- [6] E. DiBenedetto, C1 + α local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal.7 (1983) 827–850. Zbl0539.35027MR709038
- [7] A. Farina, Liouville-type theorems for elliptic problems, in Handbook of differential equations: stationary partial differential equations, Elsevier/North-Holland, Amsterdam. Handb. Differ. Equ. 4 (2007) 61–116. Zbl1191.35128MR2569331
- [8] A. Farina and E. Valdinoci, Flattening results for elliptic PDEs in unbounded domains with applications to overdetermined problems. Arch. Ration. Mech. Anal.195 (2010) 1025–1058. Zbl1236.35058MR2591980
- [9] A. Farina and E. Valdinoci, A pointwise gradient estimate in possibly unbounded domains with nonnegative mean curvature. Adv. Math.225 (2010) 2808–2827. Zbl1200.35131MR2680184
- [10] A. Farina and E. Valdinoci, A pointwise gradient bound for elliptic equations on compact manifolds with nonnegative Ricci curvature. Discrete Contin. Dyn. Syst.30 (2011) 1139–1144. Zbl1230.53037MR2812957
- [11] D. Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order. Classics in Mathematics. Springer-Verlag, Berlin (2001). Reprint of the 1998 edition. Zbl1042.35002MR1814364
- [12] P. Hartman, Ordinary differential equations, Society for Industrial and Applied Mathematics SIAM, Philadelphia, PA. Classics Appl. Math. 38 (2002). Corrected reprint of the second (1982) edition [Birkhäuser, Boston, MA, MR0658490 (83e:34002)]. With a foreword by Peter Bates. Zbl1009.34001MR1929104
- [13] L. Modica, A gradient bound and a Liouville theorem for nonlinear Poisson equations. Commun. Pure Appl. Math.38 (1985) 679–684. Zbl0612.35051MR803255
- [14] L.E. Payne, Some remarks on maximum principles. J. Anal. Math.30 (1976) 421–433. Zbl0334.35029MR454338
- [15] J. Serrin, Entire solutions of nonlinear Poisson equations. Proc. London Math. Soc.24 (1972) 348–366. Zbl0229.35035MR289961
- [16] R.P. Sperb, Maximum principles and their applications, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York. Math. Sci. Eng. 157 (1981). Zbl0454.35001MR615561
- [17] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations. J. Differ. Equ.51 (1984) 126–150. Zbl0488.35017MR727034
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.