# Homogeneous approximations and local observer design

Tomas Ménard; Emmanuel Moulay; Wilfrid Perruquetti

ESAIM: Control, Optimisation and Calculus of Variations (2013)

- Volume: 19, Issue: 3, page 906-929
- ISSN: 1292-8119

## Access Full Article

top## Abstract

top## How to cite

topMénard, Tomas, Moulay, Emmanuel, and Perruquetti, Wilfrid. "Homogeneous approximations and local observer design." ESAIM: Control, Optimisation and Calculus of Variations 19.3 (2013): 906-929. <http://eudml.org/doc/272779>.

@article{Ménard2013,

abstract = {This paper is concerned with the construction of local observers for nonlinear systems without inputs, satisfying an observability rank condition. The aim of this study is, first, to define an homogeneous approximation that keeps the observability property unchanged at the origin. This approximation is further used in the synthesis of a local observer which is proven to be locally convergent for Lyapunov-stable systems. We compare the performance of the homogeneous approximation observer with the classical linear approximation observer on an example.},

author = {Ménard, Tomas, Moulay, Emmanuel, Perruquetti, Wilfrid},

journal = {ESAIM: Control, Optimisation and Calculus of Variations},

keywords = {homogeneity; approximations; local observer; Lyapunov-stable systems; nonlinear systems; local convergence},

language = {eng},

number = {3},

pages = {906-929},

publisher = {EDP-Sciences},

title = {Homogeneous approximations and local observer design},

url = {http://eudml.org/doc/272779},

volume = {19},

year = {2013},

}

TY - JOUR

AU - Ménard, Tomas

AU - Moulay, Emmanuel

AU - Perruquetti, Wilfrid

TI - Homogeneous approximations and local observer design

JO - ESAIM: Control, Optimisation and Calculus of Variations

PY - 2013

PB - EDP-Sciences

VL - 19

IS - 3

SP - 906

EP - 929

AB - This paper is concerned with the construction of local observers for nonlinear systems without inputs, satisfying an observability rank condition. The aim of this study is, first, to define an homogeneous approximation that keeps the observability property unchanged at the origin. This approximation is further used in the synthesis of a local observer which is proven to be locally convergent for Lyapunov-stable systems. We compare the performance of the homogeneous approximation observer with the classical linear approximation observer on an example.

LA - eng

KW - homogeneity; approximations; local observer; Lyapunov-stable systems; nonlinear systems; local convergence

UR - http://eudml.org/doc/272779

ER -

## References

top- [1] V. Andrieu and L. Praly, On the existence of a Kazantzis–Kravaris/Luenberger observer. SIAM J. Control Optim.45 (2006) 432–456. Zbl1109.93012MR2246084
- [2] V. Andrieu, L. Praly and A. Astolfi, Homogeneous approximation, recursive observer design, and output feedback. SIAM J. Control Optim.47 (2008) 1814–1850. Zbl1165.93020MR2421331
- [3] G. Besançon and A. Ticlea, An immersion-based observer design for rank-observable nonlinear systems. IEEE Trans. Autom. Control52 (2007) 83–88. Zbl1222.93041MR2286764
- [4] R.M. Bianchini and G. Stefani, Graded approximations and controllability along a trajectory. SIAM J. Control Optim.28 (1990) 903–924. Zbl0712.93005MR1051629
- [5] G. Conte, C.H. Moog and A.M. Perdon, Algrebraic Methods for Nonlinear Control Systems. Springer, London, 2nd (2007). Zbl1130.93030MR2305378
- [6] S. Diop and M. Fliess, Nonlinear observability, identifiability and persistent trajectory, in IEEE 30th Conference on Decision and Control (1991) 714–719.
- [7] M. Fliess, C. Join and H. Sira-Ramirez, Nonlinear estimation is easy. Int. J. Model. Identification Control.4 (2008) 12–27.
- [8] J.P. Gauthier and G. Bornard, Observability for any u(t) of a class of nonlinear systems. IEEE Trans. Autom. Control26 (1981) 922–926. Zbl0553.93014MR635851
- [9] J.P. Gauthier, H. Hammouri and S. Othman, A simple observer for nonlinear systems applications to bioreactors. IEEE Trans. Autom. Control37 (1992) 875–880. Zbl0775.93020MR1164571
- [10] A. Glumineau, C.H. Moog and F. Plestan, New algebraic-geometric conditions for the linearization by input-output injection. IEEE Trans. Autom. Control41 (1996) 598–603. Zbl0851.93018MR1385333
- [11] R.W Goodman, Nilpotent Lie groups: structure and applications to analysis, Lectures Note Math. Springer-Verlag, Berlin, New-York 562 (1976). Zbl0347.22001MR442149
- [12] H. Hermes, Control systems which generate decomposable lie algebras. J. Differ. Equ.44 (1982) 166–187. Zbl0496.49021MR657777
- [13] H. Hermes, Nilpotent and high-order approximations of vector-field systems. SIAM Rev.33 (1991) 238–264. Zbl0733.93062MR1108590
- [14] M. Kawski, Homogeneous stabilizing feedback laws. Control Theory and Advanced Technology6 (1990) 497–516. MR1092775
- [15] N. Kazantzis and C. Kravaris, Nonlinear observer design using Lyapunov’s auxiliary theorem. Syst. Control Lett.34 (1998) 241–247. Zbl0909.93002MR1639021
- [16] H.K. Khalil, High-gain observers in nonlinear feedback control. In International Conference on Control, Automation and system (2008). Zbl0942.93038
- [17] A.J. Krener and A. Isidori, Linearization by output injection and nonlinear observers. Syst. Control Lett.3 (1983) 47–52. Zbl0524.93030MR713426
- [18] A.J. Krener and W. Respondek, Nonlinear observers with linearizable error dynamics. SIAM J. Control Optim.23 (1985) 197–216. Zbl0569.93035MR777456
- [19] J. Li and C. Qian, Global finite-time stabilization by dynamic output feedback for a class of continuous nonlinear systems. IEEE Trans. Autom. Control51 (2006) 879–884. MR2232618
- [20] T. Menard, E. Moulay and W. Perruquetti, A global high-gain finite-time observer. IEEE Trans. Autom. Control55 (2010) 1500–1506. MR2668964
- [21] K. Nam, An approximate nonlinear observer with polynomial coordinate transformation maps. IEEE Trans. Autom. Control42 (1997) 522–527. Zbl0872.93015MR1442587
- [22] A.R. Phelps, On constructing nonlinear observers. SIAM J. Control Optim.29 (1991) 516–534. Zbl0738.93032MR1089143
- [23] L. Rothschild and E. Stein, Hypoelliptic differential operators and nilpotent groups. Acta Mathematica137 (1976) 247–320. Zbl0346.35030MR436223
- [24] I. Souleiman, A. Glumineau and G. Schreier, Direct transformation of nonlinear systems into state affine miso form for observer design. IEEE Trans. Autom. Control48 (2003) 2191–2196. MR2027242
- [25] G. Stefani, Polynomial approximations to control systems and local controllability, in Proc. of the 24th IEEE Conference on Decision and Control (1985) 33–38.
- [26] V. Sundarapandian, Local observer design for nonlinear systems. Math. Comput. Model.35 (2002) 25–36. Zbl1013.93014MR1877046
- [27] H.J. Sussmann, A general theorem on local controllability. SIAM J. Control Optim.25 (1987) 158–194. Zbl0629.93012MR872457

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.