Remarks on non controllability of the heat equation with memory
Sergio Guerrero; Oleg Yurievich Imanuvilov
ESAIM: Control, Optimisation and Calculus of Variations (2013)
- Volume: 19, Issue: 1, page 288-300
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] A.V. Fursikov and O.Yu. Imanuvilov, Controllability of Evolution Equations, Seoul National University, Korea Lect. Notes. 34 (1996). Zbl0862.49004MR1406566
- [2] O.Yu. Imanuvilov, Controllability of parabolic equations (Russian) Mat. Sb. 186 (1995) 109–132; translation in Sb. Math. 186 (1995) 879–900. Zbl0845.35040MR1349016
- [3] S. Ivanov and L. Pandolfi, Heat equation with memory : Lack of controllability to rest. J. Math. Anal. Appl.355 (2009) 1–11. Zbl1160.93008MR2514446
- [4] G. Lebeau and L. Robbiano, Contrôle exact de l’équation de la chaleur (French). [Exact control of the heat equation]. Commun. Partial Differ. Equ. 20 (1995) 335–356. Zbl0819.35071MR1312710
- [5] J.-L. Lions, Exact controllability, stabilizability and perturbations for distributed systems. SIAM Rev.30 (1988) 1–68. Zbl0644.49028MR931277
- [6] J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications I, Translated from the French by P. Kenneth, edited by Springer-Verlag, New York, Heidelberg. Die Grundlehren der Mathematischen Wissenschaften. 181 (1972). Zbl0223.35039MR350177
- [7] D.L. Russell, Controllability and stabilizability theory for linear partial differential equations. Recent progress and open questions. SIAM Rev. 20 (1978) 639–739. Zbl0397.93001MR508380
- [8] R. Temam, Navier-Stokes equations, Theory and numerical analysis, edited by North Holland Publishing Co., Amsterdam, New York, Oxford Studies in Math. Appl. 2 (1977). Zbl0383.35057MR609732