Single input controllability of a simplified fluid-structure interaction model
Yuning Liu; Takéo Takahashi; Marius Tucsnak
ESAIM: Control, Optimisation and Calculus of Variations (2013)
- Volume: 19, Issue: 1, page 20-42
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] A. Bensoussan, G. Da Prato, M.C. Delfour and S.K. Mitter, Representation and control of infinite-dimensional systems, Systems & Control : Foundations & Applications 1. Birkhäuser Boston Inc., Boston, MA (1992). Zbl1117.93002MR2273323
- [2] M. Boulakia and A. Osses, Local null controllability of a two-dimensional fluid-structure interaction problem. ESAIM : COCV 14 (2008) 1–42. Zbl1149.35068MR2375750
- [3] S. Dolecki and D.L. Russell, A general theory of observation and control. SIAM J. Control Optim.15 (1977) 185–220. Zbl0353.93012MR451141
- [4] A. Doubova and E. Fernández-Cara, Some control results for simplified one-dimensional models of fluid-solid interaction. Math. Models Methods Appl. Sci.15 (2005) 783–824. Zbl1122.93008MR2139944
- [5] H.O. Fattorini and D.L. Russell, Exact controllability theorems for linear parabolic equations in one space dimension. Arch. Rational Mech. Anal.43 (1971) 272–292. Zbl0231.93003MR335014
- [6] A.V. Fursikov and O.Yu. Imanuvilov, Controllability of Evolution Equations, Lecture Notes Series 34. Seoul National University Research Institute of Mathematics, Global Analysis Research Center, Seoul (1996). Zbl0862.49004MR1406566
- [7] F. Gozzi and P. Loreti. Regularity of the minimum time function and minimum energy problems : the linear case. SIAM J. Control Optim. 37 (1999) 1195–1221 (electronic). Zbl0958.49014MR1691938
- [8] O. Imanuvilov and T. Takahashi, Exact controllability of a fluid-rigid body system. J. Math. Pures Appl. (9) 87 (2007) 408–437. Zbl1124.35056MR2317341
- [9] O.Y. Imanuvilov, Remarks on exact controllability for the Navier-Stokes equations. ESAIM : COCV 6 (2001) 39–72 (electronic). Zbl0961.35104MR1804497
- [10] G. Lebeau and L. Robbiano, Contrôle exact de l’équation de la chaleur. Comm. Partial Differential Equations20 (1995) 335–356. Zbl0819.35071MR1312710
- [11] L. Miller, A direct Lebeau-Robbiano strategy for the observability of heat-like semigroups. Discrete Contin. Dyn. Syst., Ser. B 14 (2010) 1465–1485. Zbl1219.93017MR2679651
- [12] J.-C. Saut and B. Scheurer, Unique continuation for some evolution equations. J. Differential Equations66 (1987) 118–139. Zbl0631.35044MR871574
- [13] G. Tenenbaum and M. Tucsnak, On the null-controllability of diffusion equations. ESAIM : COCV 17 (2011) 1088–1100. Zbl1236.93025MR2859866
- [14] G. Tenenbaum and M. Tucsnak, New blow-up rates for fast controls of Schrödinger and heat equations. J. Differential Equations243 (2007) 70–100. Zbl1127.93016MR2363470
- [15] M. Tucsnak and G. Weiss, Observation and control for operator semigroups. Birkhäuser Advanced Texts : Basler Lehrbücher [Birkhäuser Advanced Texts : Basel Textbooks], Birkhäuser Verlag, Basel (2009). Zbl1188.93002MR2502023
- [16] J.L. Vázquez and E. Zuazua, Large time behavior for a simplified 1D model of fluid-solid interaction. Comm. Partial Differential Equations28 (2003) 1705–1738. Zbl1071.74017MR2001181
- [17] J.L. Vázquez and E. Zuazua, Lack of collision in a simplified 1D model for fluid-solid interaction. Math. Models Methods Appl. Sci.16 (2006) 637–678. Zbl05045353MR2226121