Controllability of a simplified model of fluid-structure interaction

S. Ervedoza; M. Vanninathan

ESAIM: Control, Optimisation and Calculus of Variations (2014)

  • Volume: 20, Issue: 2, page 547-575
  • ISSN: 1292-8119

Abstract

top
This article aims at studying the controllability of a simplified fluid structure interaction model derived and developed in [C. Conca, J. Planchard and M. Vanninathan, RAM: Res. Appl. Math. John Wiley & Sons Ltd., Chichester (1995); J.-P. Raymond and M. Vanninathan, ESAIM: COCV 11 (2005) 180–203; M. Tucsnak and M. Vanninathan, Systems Control Lett. 58 (2009) 547–552]. This interaction is modeled by a wave equation surrounding a harmonic oscillator. Our main result states that, in the radially symmetric case, this system can be controlled from the outer boundary. This improves previous results [J.-P. Raymond and M. Vanninathan, ESAIM: COCV 11 (2005) 180–203; M. Tucsnak and M. Vanninathan, Systems Control Lett. 58 (2009) 547–552]. Our proof is based on a spherical harmonic decomposition of the solution and the so-called lateral propagation of the energy for 1d waves.

How to cite

top

Ervedoza, S., and Vanninathan, M.. "Controllability of a simplified model of fluid-structure interaction." ESAIM: Control, Optimisation and Calculus of Variations 20.2 (2014): 547-575. <http://eudml.org/doc/272824>.

@article{Ervedoza2014,
abstract = {This article aims at studying the controllability of a simplified fluid structure interaction model derived and developed in [C. Conca, J. Planchard and M. Vanninathan, RAM: Res. Appl. Math. John Wiley & Sons Ltd., Chichester (1995); J.-P. Raymond and M. Vanninathan, ESAIM: COCV 11 (2005) 180–203; M. Tucsnak and M. Vanninathan, Systems Control Lett. 58 (2009) 547–552]. This interaction is modeled by a wave equation surrounding a harmonic oscillator. Our main result states that, in the radially symmetric case, this system can be controlled from the outer boundary. This improves previous results [J.-P. Raymond and M. Vanninathan, ESAIM: COCV 11 (2005) 180–203; M. Tucsnak and M. Vanninathan, Systems Control Lett. 58 (2009) 547–552]. Our proof is based on a spherical harmonic decomposition of the solution and the so-called lateral propagation of the energy for 1d waves.},
author = {Ervedoza, S., Vanninathan, M.},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {controllability; observability; fluid-structure interaction},
language = {eng},
number = {2},
pages = {547-575},
publisher = {EDP-Sciences},
title = {Controllability of a simplified model of fluid-structure interaction},
url = {http://eudml.org/doc/272824},
volume = {20},
year = {2014},
}

TY - JOUR
AU - Ervedoza, S.
AU - Vanninathan, M.
TI - Controllability of a simplified model of fluid-structure interaction
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2014
PB - EDP-Sciences
VL - 20
IS - 2
SP - 547
EP - 575
AB - This article aims at studying the controllability of a simplified fluid structure interaction model derived and developed in [C. Conca, J. Planchard and M. Vanninathan, RAM: Res. Appl. Math. John Wiley & Sons Ltd., Chichester (1995); J.-P. Raymond and M. Vanninathan, ESAIM: COCV 11 (2005) 180–203; M. Tucsnak and M. Vanninathan, Systems Control Lett. 58 (2009) 547–552]. This interaction is modeled by a wave equation surrounding a harmonic oscillator. Our main result states that, in the radially symmetric case, this system can be controlled from the outer boundary. This improves previous results [J.-P. Raymond and M. Vanninathan, ESAIM: COCV 11 (2005) 180–203; M. Tucsnak and M. Vanninathan, Systems Control Lett. 58 (2009) 547–552]. Our proof is based on a spherical harmonic decomposition of the solution and the so-called lateral propagation of the energy for 1d waves.
LA - eng
KW - controllability; observability; fluid-structure interaction
UR - http://eudml.org/doc/272824
ER -

References

top
  1. [1] C. Bardos, G. Lebeau and J. Rauch, Un exemple d’utilisation des notions de propagation pour le contrôle et la stabilisation de problèmes hyperboliques. Nonlinear hyperbolic equations in applied sciences. Rend. Sem. Mat. Univ. Politec. Torino, (Special Issue) 1988 (1989) 11–31. Zbl0673.93037MR1007364
  2. [2] C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Control Optim.30 (1992) 1024–1065. Zbl0786.93009MR1178650
  3. [3] N. Burq, Mesures semi-classiques et mesures de défaut. Séminaire Bourbaki, Vol. 1996/97. Astérisque, (245): Exp. No. 826 (1997) 167–195. Zbl0954.35102MR1627111
  4. [4] N. Burq and P. Gérard, Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes. C. R. Acad. Sci. Paris Sér. I Math.325 (1997) 749–752. Zbl0906.93008MR1483711
  5. [5] N. Burq and M. Zworski, Geometric control in the presence of a black box. J. Amer. Math. Soc.17 (2004) 443–471. Zbl1050.35058MR2051618
  6. [6] C. Conca, J. Planchard and M. Vanninathan, Fluids and periodic structures, vol. 38 of RAM: Res. Appl. Math. John Wiley & Sons Ltd., Chichester (1995). Zbl0910.76002MR1652238
  7. [7] B. Dehman and G. Lebeau, Analysis of the HUM control operator and exact controllability for semilinear waves in uniform time. SIAM J. Control Optim.48 (2009) 521–550. Zbl1194.35268MR2486082
  8. [8] S. Ervedoza, Spectral conditions for admissibility and observability of wave systems: applications to finite element schemes. Numer. Math.113 (2009) 377–415. Zbl1170.93013MR2534130
  9. [9] S. Ervedoza and E. Zuazua. A systematic method for building smooth controls for smooth data. Discrete Contin. Dyn. Syst. Ser. B14 (2010) 1375–1401. Zbl1219.93011MR2679646
  10. [10] S. Ervedoza and E. Zuazua, The wave equation: Control and numerics. Control Partial Differ. Eqs. Lect. Notes Math., CIME Subseries. edited by P.M. Cannarsa and J.M. Coron. Springer Verlag (2011). MR3220862
  11. [11] P. Gérard, Microlocal defect measures. Commun. Partial Differ. Eqs.16 (1991) 1761–1794. Zbl0770.35001MR1135919
  12. [12] L. Hörmander, The analysis of linear partial differential operators. I, Distribution theory and Fourier analysis. Vol. 256 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 2nd edn. (1990). Zbl0712.35001MR1065993
  13. [13] J.-L. Lions, Contrôlabilité exacte, Stabilisation et Perturbations de Systèmes Distribués. Tome 1. Contrôlabilité exacte, vol. 8 RMA. Masson (1988). Zbl0653.93002MR963060
  14. [14] J.-L. Lions, Exact controllability, stabilization and perturbations for distributed systems. SIAM Review30 (1988) 1–68. Zbl0644.49028MR931277
  15. [15] R.B. Melrose and J. Sjöstrand, Singularities of boundary value problems. II. Commun. Pure Appl. Math.35 (1982) 129–168. Zbl0546.35083MR644020
  16. [16] L. Miller, Controllability cost of conservative systems: resolvent condition and transmutation. J. Funct. Anal.218 (2005) 425–444. Zbl1122.93011MR2108119
  17. [17] J.V. Ralston, Solutions of the wave equation with localized energy. Commun. Pure Appl. Math.22 (1969) 807–823. Zbl0209.40402MR254433
  18. [18] J.-P. Raymond and M. Vanninathan, Exact controllability in fluid-solid structure: the Helmholtz model. ESAIM: COCV 11 (2005) 180–203. Zbl1125.93007MR2141885
  19. [19] J.-P. Raymond and M. Vanninathan, Null controllability in a fluid-solid structure model. J. Differ. Eqs.248 (2010) 1826–1865. Zbl1226.93030MR2593609
  20. [20] M. Tucsnak and M. Vanninathan, Locally distributed control for a model of fluid-structure interaction. Systems Control Lett.58 (2009) 547–552. Zbl1166.93006MR2542110
  21. [21] M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, vol. XI of Birkäuser Advanced Texts. Springer (2009). Zbl1188.93002MR2502023
  22. [22] E. Zuazua, Exact controllability for semilinear wave equations in one space dimension. Ann. Inst. Henri Poincaré Anal. Non Linéaire10 (1993) 109–129. Zbl0769.93017MR1212631

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.