# Controllability of a simplified model of fluid-structure interaction

ESAIM: Control, Optimisation and Calculus of Variations (2014)

- Volume: 20, Issue: 2, page 547-575
- ISSN: 1292-8119

## Access Full Article

top## Abstract

top## How to cite

topErvedoza, S., and Vanninathan, M.. "Controllability of a simplified model of fluid-structure interaction." ESAIM: Control, Optimisation and Calculus of Variations 20.2 (2014): 547-575. <http://eudml.org/doc/272824>.

@article{Ervedoza2014,

abstract = {This article aims at studying the controllability of a simplified fluid structure interaction model derived and developed in [C. Conca, J. Planchard and M. Vanninathan, RAM: Res. Appl. Math. John Wiley & Sons Ltd., Chichester (1995); J.-P. Raymond and M. Vanninathan, ESAIM: COCV 11 (2005) 180–203; M. Tucsnak and M. Vanninathan, Systems Control Lett. 58 (2009) 547–552]. This interaction is modeled by a wave equation surrounding a harmonic oscillator. Our main result states that, in the radially symmetric case, this system can be controlled from the outer boundary. This improves previous results [J.-P. Raymond and M. Vanninathan, ESAIM: COCV 11 (2005) 180–203; M. Tucsnak and M. Vanninathan, Systems Control Lett. 58 (2009) 547–552]. Our proof is based on a spherical harmonic decomposition of the solution and the so-called lateral propagation of the energy for 1d waves.},

author = {Ervedoza, S., Vanninathan, M.},

journal = {ESAIM: Control, Optimisation and Calculus of Variations},

keywords = {controllability; observability; fluid-structure interaction},

language = {eng},

number = {2},

pages = {547-575},

publisher = {EDP-Sciences},

title = {Controllability of a simplified model of fluid-structure interaction},

url = {http://eudml.org/doc/272824},

volume = {20},

year = {2014},

}

TY - JOUR

AU - Ervedoza, S.

AU - Vanninathan, M.

TI - Controllability of a simplified model of fluid-structure interaction

JO - ESAIM: Control, Optimisation and Calculus of Variations

PY - 2014

PB - EDP-Sciences

VL - 20

IS - 2

SP - 547

EP - 575

AB - This article aims at studying the controllability of a simplified fluid structure interaction model derived and developed in [C. Conca, J. Planchard and M. Vanninathan, RAM: Res. Appl. Math. John Wiley & Sons Ltd., Chichester (1995); J.-P. Raymond and M. Vanninathan, ESAIM: COCV 11 (2005) 180–203; M. Tucsnak and M. Vanninathan, Systems Control Lett. 58 (2009) 547–552]. This interaction is modeled by a wave equation surrounding a harmonic oscillator. Our main result states that, in the radially symmetric case, this system can be controlled from the outer boundary. This improves previous results [J.-P. Raymond and M. Vanninathan, ESAIM: COCV 11 (2005) 180–203; M. Tucsnak and M. Vanninathan, Systems Control Lett. 58 (2009) 547–552]. Our proof is based on a spherical harmonic decomposition of the solution and the so-called lateral propagation of the energy for 1d waves.

LA - eng

KW - controllability; observability; fluid-structure interaction

UR - http://eudml.org/doc/272824

ER -

## References

top- [1] C. Bardos, G. Lebeau and J. Rauch, Un exemple d’utilisation des notions de propagation pour le contrôle et la stabilisation de problèmes hyperboliques. Nonlinear hyperbolic equations in applied sciences. Rend. Sem. Mat. Univ. Politec. Torino, (Special Issue) 1988 (1989) 11–31. Zbl0673.93037MR1007364
- [2] C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Control Optim.30 (1992) 1024–1065. Zbl0786.93009MR1178650
- [3] N. Burq, Mesures semi-classiques et mesures de défaut. Séminaire Bourbaki, Vol. 1996/97. Astérisque, (245): Exp. No. 826 (1997) 167–195. Zbl0954.35102MR1627111
- [4] N. Burq and P. Gérard, Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes. C. R. Acad. Sci. Paris Sér. I Math.325 (1997) 749–752. Zbl0906.93008MR1483711
- [5] N. Burq and M. Zworski, Geometric control in the presence of a black box. J. Amer. Math. Soc.17 (2004) 443–471. Zbl1050.35058MR2051618
- [6] C. Conca, J. Planchard and M. Vanninathan, Fluids and periodic structures, vol. 38 of RAM: Res. Appl. Math. John Wiley & Sons Ltd., Chichester (1995). Zbl0910.76002MR1652238
- [7] B. Dehman and G. Lebeau, Analysis of the HUM control operator and exact controllability for semilinear waves in uniform time. SIAM J. Control Optim.48 (2009) 521–550. Zbl1194.35268MR2486082
- [8] S. Ervedoza, Spectral conditions for admissibility and observability of wave systems: applications to finite element schemes. Numer. Math.113 (2009) 377–415. Zbl1170.93013MR2534130
- [9] S. Ervedoza and E. Zuazua. A systematic method for building smooth controls for smooth data. Discrete Contin. Dyn. Syst. Ser. B14 (2010) 1375–1401. Zbl1219.93011MR2679646
- [10] S. Ervedoza and E. Zuazua, The wave equation: Control and numerics. Control Partial Differ. Eqs. Lect. Notes Math., CIME Subseries. edited by P.M. Cannarsa and J.M. Coron. Springer Verlag (2011). MR3220862
- [11] P. Gérard, Microlocal defect measures. Commun. Partial Differ. Eqs.16 (1991) 1761–1794. Zbl0770.35001MR1135919
- [12] L. Hörmander, The analysis of linear partial differential operators. I, Distribution theory and Fourier analysis. Vol. 256 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 2nd edn. (1990). Zbl0712.35001MR1065993
- [13] J.-L. Lions, Contrôlabilité exacte, Stabilisation et Perturbations de Systèmes Distribués. Tome 1. Contrôlabilité exacte, vol. 8 RMA. Masson (1988). Zbl0653.93002MR963060
- [14] J.-L. Lions, Exact controllability, stabilization and perturbations for distributed systems. SIAM Review30 (1988) 1–68. Zbl0644.49028MR931277
- [15] R.B. Melrose and J. Sjöstrand, Singularities of boundary value problems. II. Commun. Pure Appl. Math.35 (1982) 129–168. Zbl0546.35083MR644020
- [16] L. Miller, Controllability cost of conservative systems: resolvent condition and transmutation. J. Funct. Anal.218 (2005) 425–444. Zbl1122.93011MR2108119
- [17] J.V. Ralston, Solutions of the wave equation with localized energy. Commun. Pure Appl. Math.22 (1969) 807–823. Zbl0209.40402MR254433
- [18] J.-P. Raymond and M. Vanninathan, Exact controllability in fluid-solid structure: the Helmholtz model. ESAIM: COCV 11 (2005) 180–203. Zbl1125.93007MR2141885
- [19] J.-P. Raymond and M. Vanninathan, Null controllability in a fluid-solid structure model. J. Differ. Eqs.248 (2010) 1826–1865. Zbl1226.93030MR2593609
- [20] M. Tucsnak and M. Vanninathan, Locally distributed control for a model of fluid-structure interaction. Systems Control Lett.58 (2009) 547–552. Zbl1166.93006MR2542110
- [21] M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, vol. XI of Birkäuser Advanced Texts. Springer (2009). Zbl1188.93002MR2502023
- [22] E. Zuazua, Exact controllability for semilinear wave equations in one space dimension. Ann. Inst. Henri Poincaré Anal. Non Linéaire10 (1993) 109–129. Zbl0769.93017MR1212631

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.