When some variational properties force convexity
M. Volle; J.-B. Hiriart-Urruty; C. Zălinescu
ESAIM: Control, Optimisation and Calculus of Variations (2013)
- Volume: 19, Issue: 3, page 701-709
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] E. Asplund, Fréchet differentiability of convex functions. Acta Math.121 (1968) 31–47. Zbl0162.17501MR231199
- [2] E. Asplund, Čebysev sets in Hilbert spaces. Trans. Amer. Math. Soc.9 (1969) 235–240. Zbl0187.05504MR253023
- [3] E. Asplund, Differentiability of the metric projection in finite-dimensional Euclidean spaces. Proc. Amer. Math. Soc.38 (1973) 218–219. Zbl0269.52002MR310150
- [4] E. Asplund and R.T. Rockafellar, Gradients of convex functions. Trans. Amer. Math. Soc.139 (1969) 443–467. Zbl0181.41901MR240621
- [5] H.H. Bauschke, J.M. Borwein and P.L. Combettes, Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces. Commun. Contemp. Math.3 (2001) 615–647. Zbl1032.49025MR1869107
- [6] J. Blatter, Weiteste Punkte und nächste Punkte. Rev. Roum. Math. Pures Appl.14 (1969) 615–621. Zbl0205.12301MR251510
- [7] J. M. Borwein and J. D. Vanderwerff, Convex Functions: Constructions, Characterizations and Counterexamples. Encyclopedia of Mathematics and its Applications, vol. 109. Cambridge University Press, Cambridge (2010). Zbl1191.26001MR2596822
- [8] F.H. Clarke, R.J. Stern and P.R. Wolenski, Proximal smoothness and the lower-C2 property. J. Conv. Anal.2 (1995) 117–144. Zbl0881.49008MR1363364
- [9] S. Cobzaş, Geometric properties of Banach spaces and the existence of nearest and farthest points. Abstract Appl. Anal.3 (2005) 259–285. Zbl1100.46005MR2197120
- [10] A.L. Dontchev and T. Zolezzi, Well-Posed Optimization Problems. Springer-Verlag, Berlin (1993). Zbl0797.49001MR1239439
- [11] N.V. Efimov and S.B. Steckin, Approximative compactness and Čebysev sets. Soviet Math. Dokl.2 (1961) 1226–1228. Zbl0103.08101
- [12] S. Fitzpatrick, Metric projections and the differentiability of distance functions. Bull. Austral. Math. Soc.22 (1980) 291–312. Zbl0437.46012MR598702
- [13] J.-B. Hiriart-Urruty, Ensembles de Tchebychev vs. ensembles convexes: l’état de la situation vu via l’analyse convexe non lisse. Ann. Sc. Math. Québec22 (1998) 47–62. Zbl1098.49506MR1626398
- [14] J.-B. Hiriart-Urruty, La conjecture des points les plus eloignés revisitée. Ann. Sci. Math. Québec29 (2005) 197–214. Zbl1129.46007MR2309707
- [15] V. Klee, Convexity of Chebyshev sets. Math. Ann.142 (1961) 292–304 Zbl0091.27701MR121633
- [16] M. Lassonde, Asplund spaces, Stegall variational principle and the RNP. Set-Valued Var. Anal.17 (2009) 183–193. Zbl1176.46024MR2529695
- [17] J.-J. Moreau, Fonctionnelles Convexes, Collège de France, 1966. Republished by the “Tor Vergata” University, Rome (2003).
- [18] T.D. Narang, A study of farthest points. Nieuw Arch. Voor Wiscunde 3 (1977) XXV 54–79. Zbl0342.46009MR487206
- [19] B.B. Panda and O.P. Kapoor, On farthest points of sets. J. Math. Anal. Appl.62 (1978) 345–353. Zbl0367.46013MR473794
- [20] R.R. Phelps, Convex Functions, Monotone Operators and Differentiability. Lect. Notes Math., vol. 1364. Springer-Verlag (1989). Zbl0658.46035MR984602
- [21] T. Precupanu, Relationships between farthest point problem and best approximation problem. Anal. Sci. Univ. AI. I. Cuza, Mat. 57 (2011) 1–12. Zbl1224.41106MR2985661
- [22] V. Soloviov, Duality for nonconvex optimization and its applications. Anal. Math.19 (1993) 297–315. Zbl0806.49026MR1268040
- [23] V. Soloviov, Characterization of convexity in terms of smoothness. Unpublished report, Moscow Aviation Institute (1995).
- [24] T. Stromberg, Duality between Fréchet differentiability and strong convexity. Positivity15 (2011) 527–536. Zbl1237.46030MR2832604
- [25] M. Volle and J.-B. Hiriart-Urruty, A characterization of essentially strictly convex functions in reflexive Banach spaces. Nonlinear Anal.75 (2012) 1617–1622. Zbl1244.46019MR2861361
- [26] M. Volle and C. Zălinescu, On strongly adequate functions on Banach spaces. J. Convex Anal. (to appear). Zbl1285.46031MR3136595
- [27] X. Wang, On Chebyshev functions and Klee functions. J. Math. Anal. Appl.368 (2010) 293–310. Zbl1211.49022MR2609277
- [28] C. Zălinescu, Convex Analysis in General Vector Spaces. World Scientific, River Edge, N.J. (2002). Zbl1023.46003