On time optimal control of the wave equation, its regularization and optimality system
Karl Kunisch; Daniel Wachsmuth
ESAIM: Control, Optimisation and Calculus of Variations (2013)
- Volume: 19, Issue: 2, page 317-336
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topKunisch, Karl, and Wachsmuth, Daniel. "On time optimal control of the wave equation, its regularization and optimality system." ESAIM: Control, Optimisation and Calculus of Variations 19.2 (2013): 317-336. <http://eudml.org/doc/272832>.
@article{Kunisch2013,
abstract = {An approximation procedure for time optimal control problems for the linear wave equation is analyzed. Its asymptotic behavior is investigated and an optimality system including the maximum principle and the transversality conditions for the regularized and unregularized problems are derived.},
author = {Kunisch, Karl, Wachsmuth, Daniel},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {time optimal control; wave equation; optimality condition; transversality condition},
language = {eng},
number = {2},
pages = {317-336},
publisher = {EDP-Sciences},
title = {On time optimal control of the wave equation, its regularization and optimality system},
url = {http://eudml.org/doc/272832},
volume = {19},
year = {2013},
}
TY - JOUR
AU - Kunisch, Karl
AU - Wachsmuth, Daniel
TI - On time optimal control of the wave equation, its regularization and optimality system
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2013
PB - EDP-Sciences
VL - 19
IS - 2
SP - 317
EP - 336
AB - An approximation procedure for time optimal control problems for the linear wave equation is analyzed. Its asymptotic behavior is investigated and an optimality system including the maximum principle and the transversality conditions for the regularized and unregularized problems are derived.
LA - eng
KW - time optimal control; wave equation; optimality condition; transversality condition
UR - http://eudml.org/doc/272832
ER -
References
top- [1] N.U. Ahmed, Finite-time null controllability for a class of linear evolution equations on a Banach space with control constraints. J. Optim. Theory Appl.47 (1985) 129–158. Zbl0549.49028MR810125
- [2] V. Barbu. Optimal control of variational inequalities. Res. Notes Math. 100 (1984). Zbl0574.49005MR742624
- [3] D. Barcenas, H. Leiva and T. Maya, The transversality condition for infinite dimensional control systems. Revista Notas de Matematica4 (2008) 25–36. Zbl1272.49038
- [4] C. Bardos, G. Lebeau and J. Rauch, Un exemple d’utilisation des notions de propagation pour le contrôle et la stabilisation de problèmes hyperboliques, Nonlinear hyperbolic equations in applied sciences. Rend. Sem. Mat. Univ. Politec. Torino 1988 (1989) 11–31. Zbl0673.93037MR1007364
- [5] H.O. Fattorini, The time optimal problem for distributed control of systems described by the wave equation, in Control theory of systems governed by partial differential equations (Conf. Naval Surface Weapons Center, Silver Spring, Md., 1976). Academic Press, New York (1977) 151–175. Zbl0427.49006MR513538
- [6] H.O. Fattorini, Infinite-dimensional optimization and control theory. Cambridge University Press, Cambridge. Encyclopedia of Mathematics and its Applications. 62 (1999). Zbl0931.49001MR1669395
- [7] H.O. Fattorini, Infinite dimensional linear control systems, The time optimal and norm optimal problems. Elsevier Science B.V., Amsterdam. North-Holland Mathematics Studies. 201 (2005). Zbl1135.93001MR2158806
- [8] M. Gugat, Penalty techniques for state constrained optimal control problems with the wave equation. SIAM J. Control Optim. 48 (2009/2010) 3026–3051. Zbl1202.49037MR2599909
- [9] M. Gugat and G. Leugering, L∞-norm minimal control of the wave equation : on the weakness of the bang-bang principle. ESAIM : COCV 14 (2008) 254–283. Zbl1133.49006MR2394510
- [10] H. Hermes and J.P. LaSalle, Functional analysis and time optimal control. Academic Press, New York. Math. Sci. Eng. 56 (1969). Zbl0203.47504MR420366
- [11] K. Ito and K. Kunisch, Lagrange multiplier approach to variational problems and applications. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA. Advances in Design and Control. 15 (2008). Zbl1156.49002MR2441683
- [12] W. Krabs, On time-minimal distributed control of vibrating systems governed by an abstract wave equation. Appl. Math. Optim.13 (1985) 137–149. Zbl0569.49016MR794175
- [13] W. Krabs, On time-minimal distributed control of vibrations. Appl. Math. Optim.19 (1989) 65–73. Zbl0667.93058MR955090
- [14] I. Lasiecka, J.-L. Lions and R. Triggiani, Nonhomogeneous boundary value problems for second order hyperbolic operators. J. Math. Pures Appl.65 (1986) 149–192. Zbl0631.35051MR867669
- [15] E.B. Lee and L. Markus, Foundations of optimal control theory. John Wiley & Sons Inc., New York (1967). Zbl0159.13201MR220537
- [16] J.-L. Lions, Exact controllability, stabilization and perturbations for distributed systems. SIAM Rev.30 (1988) 1–68. Zbl0644.49028MR931277
- [17] G. Peichl and W. Schappacher, Constrained controllability in Banach spaces. SIAM J. Control Optim.24 (1986) 1261–1275. Zbl0612.49026MR861098
- [18] K.D. Phung, G. Wang and X. Zhang, On the existence of time optimal controls for linear evolution equations. Discrete Contin. Dyn. Syst. Ser. B8 (2007) 925–941. Zbl1210.49008MR2342129
- [19] E. Zuazua, Propagation, observation, and control of waves approximated by finite difference methods. SIAM Rev.47 (2005) 197–243. Zbl1077.65095MR2179896
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.