Stabilization of walls for nano-wires of finite length
ESAIM: Control, Optimisation and Calculus of Variations (2012)
- Volume: 18, Issue: 1, page 1-21
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topCarbou, Gilles, and Labbé, Stéphane. "Stabilization of walls for nano-wires of finite length." ESAIM: Control, Optimisation and Calculus of Variations 18.1 (2012): 1-21. <http://eudml.org/doc/277825>.
@article{Carbou2012,
abstract = {In this paper we study a one dimensional model of ferromagnetic nano-wires of finite
length. First we justify the model by Γ-convergence arguments.
Furthermore we prove the existence of wall profiles. These walls being unstable, we
stabilize them by the mean of an applied magnetic field.},
author = {Carbou, Gilles, Labbé, Stéphane},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Landau-Lifschitz equation; control; stabilization; one dimensional model; -convergence arguments; wall profiles},
language = {eng},
month = {2},
number = {1},
pages = {1-21},
publisher = {EDP Sciences},
title = {Stabilization of walls for nano-wires of finite length},
url = {http://eudml.org/doc/277825},
volume = {18},
year = {2012},
}
TY - JOUR
AU - Carbou, Gilles
AU - Labbé, Stéphane
TI - Stabilization of walls for nano-wires of finite length
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2012/2//
PB - EDP Sciences
VL - 18
IS - 1
SP - 1
EP - 21
AB - In this paper we study a one dimensional model of ferromagnetic nano-wires of finite
length. First we justify the model by Γ-convergence arguments.
Furthermore we prove the existence of wall profiles. These walls being unstable, we
stabilize them by the mean of an applied magnetic field.
LA - eng
KW - Landau-Lifschitz equation; control; stabilization; one dimensional model; -convergence arguments; wall profiles
UR - http://eudml.org/doc/277825
ER -
References
top- F. Alouges, T. Rivière and S. Serfaty, Néel and cross-tie wall energies for planar micromagnetic configurations. ESAIM : COCV8 (2002) 31–68.
- W.F. Brown, Micromagnetics. Interscience Publisher, John Willey and Sons, New York (1963).
- G. Carbou, Regularity for critical points of a nonlocal energy. Calc. Var.5 (1997) 409–433.
- G. Carbou, Thin layers in micromagnetism. Math. Models Methods Appl. Sci.11 (2001) 1529–1546.
- G. Carbou and P. Fabrie, Time average in micromagnetism. J. Differ. Equ.147 (1998) 383–409.
- G. Carbou and P. Fabrie, Regular solutions for Landau-Lifschitz equation in a bounded domain. Differential Integral Equations14 (2001) 213–229.
- G. Carbou and P. Fabrie, Regular solutions for Landau-Lifschitz equation in R3. Commun. Appl. Anal.5 (2001) 17–30.
- G. Carbou and S. Labbé, Stability for static walls in ferromagnetic nanowires. Discrete Continous Dyn. Syst. Ser. B6 (2006) 273–290.
- G. Carbou, S. Labbé and E. Trélat, Control of travelling walls in a ferromagnetic nanowire. Discrete Contin. Dyn. Syst. Ser. S1 (2008) 51–59.
- A. DeSimone, R.V. Kohn, S. Müller and F. Otto, Magnetic microstructures – a paradigm of multiscale problems, in ICIAM 99 (Edinburgh), Oxford Univ. Press, Oxford (2000) 175–190.
- L. Halpern and S. Labbé, Modélisation et simulation du comportement des matériaux ferromagnétiques. Matapli66 (2001) 70–86.
- T. Kapitula, Multidimensional stability of planar travelling waves. Trans. Amer. Math. Soc.349 (1997) 257–269.
- K. Kühn, Travelling waves with a singularity in magnetic nanowires. Commun. Partial Diff. Equ.34 (2009) 722–764.
- S. Labbé, Simulation numérique du comportement hyperfréquence des matériaux ferromagnétiques. Thèse de l’Université Paris 13, Paris (1998).
- S. Labbé and P.-Y. Bertin, Microwave polarisability of ferrite particles with non-uniform magnetization. J. Magn. Magn. Mater.206 (1999) 93–105.
- T. Rivière and S. Serfaty, Compactness, kinetic formulation, and entropies for a problem related to micromagnetics. Commun. Partial Diff. Equ.28 (2003) 249–269.
- D. Sanchez, Méthodes asymptotiques en ferromagnétisme. Thèse de l’Université Bordeaux 1, Bordeaux (2004).
- A. Thiaville, J.M. Garcia and J. Miltat, Domain wall dynamics in nanowires. J. Magn. Magn. Mater.242–245 (2002) 1061–1063.
- A. Visintin, On Landau Lifschitz equation for ferromagnetism. Japan Journal of Applied Mathematics1 (1985) 69–84.
- H. Wynled, Ferromagnetism, Encyclopedia of PhysicsXVIII/2. Springer-Verlag, Berlin (1966).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.