On indecomposable sets with applications
ESAIM: Control, Optimisation and Calculus of Variations (2014)
- Volume: 20, Issue: 2, page 612-631
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2000). Zbl0957.49001MR1857292
- [2] L. Ambrosio, V. Caselles, S. Masnou and J.-M. Morel, Connected components of sets of finite perimeter and applications to image processing. J. Eur. Math. Soc. (JEMS) 3 (2001) 39–92. Zbl0981.49024MR1812124
- [3] A. Baldi and F. Montefalcone, A note on the extension of BV functions in metric measure spaces. J. Math. Anal. Appl.340 (2008) 197–208. Zbl1264.46023MR2376147
- [4] Yu. Burago and V.G. Maz’ya, Potential theory and function theory for irregular regions. Translated from Russian. Seminars in Mathematics. Vol. 3. of V.A. Steklov Mathematical Institute, Leningrad, Consultants Bureau, New York (1969). Zbl0177.37502MR240284
- [5] G. David and S. Semmes, Quasiminimal surfaces of codimension 1 and John domains. Pacific J. Math.183 (1998) 213–277. Zbl0921.49031MR1625982
- [6] J. Kinnunenm, R. Korte, A. Lorent and N. Shanmugalingam, Regularity of sets with quasiminimal boundary surfaces in metric spaces. J. Geom. Anal.23 (2013) 1607–1640. Zbl1311.49116MR3107671
- [7] B. Kirchheim, Lipschitz minimizers of the 3-well problem having gradients of bounded variation. MIS. MPg. Preprint (12/1998).
- [8] P. Mattila, Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability. Vol. 44. of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1995). Zbl0819.28004MR1333890