# Convex shape optimization for the least biharmonic Steklov eigenvalue

Pedro Ricardo Simão Antunes; Filippo Gazzola

ESAIM: Control, Optimisation and Calculus of Variations (2013)

- Volume: 19, Issue: 2, page 385-403
- ISSN: 1292-8119

## Access Full Article

top## Abstract

top## How to cite

topSimão Antunes, Pedro Ricardo, and Gazzola, Filippo. "Convex shape optimization for the least biharmonic Steklov eigenvalue." ESAIM: Control, Optimisation and Calculus of Variations 19.2 (2013): 385-403. <http://eudml.org/doc/272917>.

@article{SimãoAntunes2013,

abstract = {The least Steklov eigenvalue d1 for the biharmonic operator in bounded domains gives a bound for the positivity preserving property for the hinged plate problem, appears as a norm of a suitable trace operator, and gives the optimal constant to estimate the L2-norm of harmonic functions. These applications suggest to address the problem of minimizing d1 in suitable classes of domains. We survey the existing results and conjectures about this topic; in particular, the existence of a convex domain of fixed measure minimizing d1 is known, although the optimal shape is still unknown. We perform several numerical experiments which strongly suggest that the optimal planar shape is the regular pentagon. We prove the existence of a domain minimizing d1 also among convex domains having fixed perimeter and present some numerical results supporting the conjecture that, among planar domains, the disk is the minimizer.},

author = {Simão Antunes, Pedro Ricardo, Gazzola, Filippo},

journal = {ESAIM: Control, Optimisation and Calculus of Variations},

keywords = {biharmonic operator; least Steklov eigenvalue; shape optimization; numerical method of fundamental solutions},

language = {eng},

number = {2},

pages = {385-403},

publisher = {EDP-Sciences},

title = {Convex shape optimization for the least biharmonic Steklov eigenvalue},

url = {http://eudml.org/doc/272917},

volume = {19},

year = {2013},

}

TY - JOUR

AU - Simão Antunes, Pedro Ricardo

AU - Gazzola, Filippo

TI - Convex shape optimization for the least biharmonic Steklov eigenvalue

JO - ESAIM: Control, Optimisation and Calculus of Variations

PY - 2013

PB - EDP-Sciences

VL - 19

IS - 2

SP - 385

EP - 403

AB - The least Steklov eigenvalue d1 for the biharmonic operator in bounded domains gives a bound for the positivity preserving property for the hinged plate problem, appears as a norm of a suitable trace operator, and gives the optimal constant to estimate the L2-norm of harmonic functions. These applications suggest to address the problem of minimizing d1 in suitable classes of domains. We survey the existing results and conjectures about this topic; in particular, the existence of a convex domain of fixed measure minimizing d1 is known, although the optimal shape is still unknown. We perform several numerical experiments which strongly suggest that the optimal planar shape is the regular pentagon. We prove the existence of a domain minimizing d1 also among convex domains having fixed perimeter and present some numerical results supporting the conjecture that, among planar domains, the disk is the minimizer.

LA - eng

KW - biharmonic operator; least Steklov eigenvalue; shape optimization; numerical method of fundamental solutions

UR - http://eudml.org/doc/272917

ER -

## References

top- [1] C.J.S. Alves, On the choice of source points in the method of fundamental solutions. Eng. Anal. Bound. Elem.33 (2009) 1348–1361. Zbl1244.65216MR2540767
- [2] C.J.S. Alves and P.R.S. Antunes, The method of fundamental solutions applied to the calculation of eigenfrequencies and eigenmodes of 2D simply connected shapes. Comput. Mater. Cont.2 (2005) 251–266.
- [3] C.J.S. Alves and P.R.S. Antunes, The method of fundamental solutions applied to the calculation of eigensolutions for 2D plates. Int. J. Numer. Methods Eng.77 (2008) 177–194. Zbl1257.74096MR2485079
- [4] P. Antunes and P. Freitas, A numerical study of the spectral gap. J. Phys. A Math. Theor. 5 (2008) 055201. Zbl1142.35054MR2433425
- [5] P.R.S. Antunes and A. Henrot, On the range of the first two Dirichlet and Neumann eigenvalues of the Laplacian. Proc. R. Soc. London Ser. A Math. Phys. Eng. Sci.467 (2011) 1577–1603. Zbl1228.35156MR2795792
- [6] R.F. Bass, J. Horák and P.J. McKenna, On the lift-off constant for elastically supported plates. Proc. Amer. Math. Soc.132 (2004) 2951–2958. Zbl1127.35008MR2063115
- [7] E. Berchio, F. Gazzola and E. Mitidieri, Positivity preserving property for a class of biharmonic elliptic problems. J. Differ. Equ.320 (2006) 1–23. Zbl1142.35016MR2265615
- [8] D. Bucur and F. Gazzola, The first biharmonic Steklov eigenvalue : positivity preserving and shape optimization. Milan J. Math.79 (2011) 247–258. Zbl1229.35156MR2831449
- [9] D. Bucur, A. Ferrero and F. Gazzola, On the first eigenvalue of a fourth order Steklov problem. Calc. Var.35 (2009) 103–131. Zbl1171.35089MR2476427
- [10] G. Buttazzo, V. Ferone and B. Kawohl, Minimum problems over sets of concave functions and related questions. Math. Nachr.173 (1995) 71–89. Zbl0835.49001MR1336954
- [11] A. Ferrero, F. Gazzola and T. Weth, On a fourth order Steklov eigenvalue problem. Analysis25 (2005) 315–332. Zbl1112.49035MR2247608
- [12] G. Fichera, Su un principio di dualità per talune formole di maggiorazione relative alle equazioni differenziali. Atti. Accut. Naz. Lincei19 (1955) 411–418. Zbl0071.31801MR79705
- [13] K. Friedrichs, Die randwert und eigenwertprobleme aus der theorie der elastischen platten. Math. Ann.98 (1927) 205–247. Zbl53.0469.03JFM53.0469.03
- [14] F. Gazzola and G. Sweers, On positivity for the biharmonic operator under Steklov boundary conditions. Arch. Ration. Mech. Anal.188 (2008) 399–427. Zbl1155.35019MR2393435
- [15] F. Gazzola, H.C. Grunau and G. Sweers, Polyharmonic boundary value problems. Lect. Notes Math. 1991 (2010). Zbl1239.35002MR2667016
- [16] B. Kawohl and G. Sweers, On “anti”-eigenvalues for elliptic systems and a question of McKenna and Walter. Indiana Univ. Math. J.51 (2002) 1023–1040. Zbl1037.35047MR1947867
- [17] G.R. Kirchhoff, Über das gleichgewicht und die bewegung einer elastischen scheibe. J. Reine Angew. Math. 40 (1850) 51–88.
- [18] J.R. Kuttler, Remarks on a Stekloff eigenvalue problem. SIAM J. Numer. Anal.9 (1972) 1–5. Zbl0202.38102MR303760
- [19] R.S. Lakes, Foam structures with a negative Poisson’s ratio. Science235 (1987) 1038–1040.
- [20] J.L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Travaux et Recherches Mathématiques 3 (1970). Zbl0197.06701
- [21] G. Liu, The Weyl-type asymptotic formula for biharmonic Steklov eigenvalues on Riemannian manifolds. Adv. Math.228 (2011) 2162–2217. Zbl1228.35163MR2836118
- [22] A.E.H. Love, A treatise on the mathematical theory of elasticity, 4th edition. Cambridge Univ. Press (1927). Zbl1258.74003JFM37.0822.01
- [23] P.J. McKenna and W. Walter, Nonlinear oscillations in a suspension bridge. Arch. Ration. Mech. Anal.98 (1987) 167–177. Zbl0676.35003MR866720
- [24] E. Parini and A. Stylianou, On the positivity preserving property of hinged plates. SIAM J. Math. Anal.41 (2009) 2031–2037. Zbl1221.35129MR2578797
- [25] L.E. Payne, Bounds for the maximum stress in the Saint Venant torsion problem. Special issue presented to Professor Bibhutibhusan Sen on the occasion of his seventieth birthday, Part I. Indian J. Mech. Math. (1968/1969) 51–59. MR351225
- [26] L.E. Payne, Some isoperimetric inequalities for harmonic functions. SIAM J. Math. Anal.1 (1970) 354–359. Zbl0199.16902MR437782
- [27] R. Schneider, Convex bodies : the Brunn-Minkowski theory. Cambridge Univ. Press (1993). Zbl1143.52002MR1216521
- [28] J. Smith, The coupled equation approach to the numerical solution of the biharmonic equation by finite differences I. SIAM J. Numer. Anal.5 (1968) 323–339. Zbl0165.50801MR233526
- [29] J. Smith, The coupled equation approach to the numerical solution of the biharmonic equation by finite differences II. SIAM J. Numer. Anal.7 (1970) 104–111. Zbl0223.65078MR272210
- [30] W. Stekloff, Sur les problèmes fondamentaux de la physique mathématique. Ann. Sci. Éc. Norm. Sup. 19 (1902) 191–259; 455–490. Zbl33.0800.01JFM33.0800.01
- [31] Wikipedia, the Free Encyclopedia, available on http://en.wikipedia.org/wiki/Reuleaux♯triangle♯Reuleaux−polygons

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.