Graph cycles and diagram commutativity

Paul C. Kainen

Diagrammes (2012)

  • Volume: 67-68, page 177-237
  • ISSN: 0224-3911

How to cite

top

Kainen, Paul C.. "Graph cycles and diagram commutativity." Diagrammes 67-68 (2012): 177-237. <http://eudml.org/doc/272975>.

@article{Kainen2012,
author = {Kainen, Paul C.},
journal = {Diagrammes},
keywords = {robust basis; well-arranged sum; blocking number; groupoid},
language = {eng},
pages = {177-237},
publisher = {Université Paris 7, Unité d'enseignement et de recherche de mathématiques},
title = {Graph cycles and diagram commutativity},
url = {http://eudml.org/doc/272975},
volume = {67-68},
year = {2012},
}

TY - JOUR
AU - Kainen, Paul C.
TI - Graph cycles and diagram commutativity
JO - Diagrammes
PY - 2012
PB - Université Paris 7, Unité d'enseignement et de recherche de mathématiques
VL - 67-68
SP - 177
EP - 237
LA - eng
KW - robust basis; well-arranged sum; blocking number; groupoid
UR - http://eudml.org/doc/272975
ER -

References

top
  1. [1] Bernhart, F. R. & Kainen, P. C., On the book thickness of a graph, J. Comb. Th., Ser. B, 27 (1979) no. 3, 320-331. Zbl0427.05028
  2. [2] C. H. Bennett, Logical reversibility of computation, IBM J. Res. November 1973, 525-532. Zbl0267.68024
  3. [3] R. Brown, From groups to groupoids: A brief survey, Bull. London Math. Soc.19 (1987) 113-134 Zbl0612.20032
  4. [4] D. Deutsch, Quantum theory, the Church-Turing principle and the universal quantum computer, Proc. Royal Soc. of LondonA 400 (1985) 97-117. Zbl0900.81019
  5. [5] Ehresmann, C., Oeuvres Completes, Univ.-de-Picardie, 2000 (4 volumes). 
  6. [6] Ehresmann, A. C., Vanbremeersch, J.-P., Memory evolutive systems: hierarchy, emergence, cognition. Elsevier, Amsterdam, 2007. Zbl1124.93002
  7. [7] Erdös, P., Fajtlowicz, S., Hoffman, A. J., Maximum degree in graphsof diameter 2Networks10 (1980) 87-90. Zbl0427.05042
  8. [8] Georgakopoulos, A., and Sprüssel, P.Geodesic topological cycles in locally finite graphs. Zbl1230.05219
  9. [9] Golubitsky, M., Stewart, I., Nonlinear dynamics of networks: The groupoid formalism, Bull. AMS43(3) (2006) 305-364. Zbl1119.37036
  10. [10] Harary, F., Graph Theory, Addison-Wesley, Reading, MA, 1970. 
  11. [11] Hechler, S. H., Kainen, P. C., Immersion of digraphs in cubes, Israel J. Math.18 (1974) 221-233. Zbl0299.05106
  12. [12] Kainen, P. C.Some recent results in topological graph theory, in Graphs and combinatorics (Proc. GWU Conf., 1973), Bari, R.A. Harary, F., Eds., Springer Lecture Notes in Math.406, Berlin, 1974, pp. 76-108. 
  13. [13] Kainen, P. C., Mathematical cognition, J. of Evolution and Cognition, 4 (1998) 81-89. 
  14. [14] Kainen, P. C., On robust cycle bases, in Proc. of 9th Quadrennial Conference on Graph Theory, Combinatorics, Algorithms and Applications, Ed. by Y. Alavi, D. Jones, D. R. Lick, and J. Liu, Kalamazoo, MI, 4?9 June, 2000; Electronic Notes in Discrete Math. 11 art. no. 38, 1-8. Zbl1075.05555
  15. [15] Kainen, P. C., Cahiers de topologie et géometrie différentielle catégoriquesXLIII (2002) 13-20. 
  16. [16] Kainen, P. C., On the Ehresmann-Vanbremeersch theory and mathematical biology, Axiomathes (2009) 19:225-244. 
  17. [17] Klemm, K., Stadler, P. F., A note on fundamental, non-fundamental, and robust cycle bases, Discr. Appl. Math.157 (2009) 2432-2438. Zbl1163.92002
  18. [18] Lawvere, F. W., Schanuel, S. H., Introduction to Categories in Continuum Physics, SpringerLNM1174, 1986, pp. 1-16. 
  19. [19] Lovasz, L.Problem 11, Combinatorial Structures and their Applications, Gorden and Breach (1970). 
  20. [20] Mac Lane, S., Categories for the Working Mathematician, Springer. Zbl0232.18001
  21. [21] Mitchell, B., Category Theory, Academic Press, NY, 1967. 
  22. [22] Moon, J. W., Topics on Tournaments, Holt, Rinehard and Winston, NY, 1968. Zbl0191.22701
  23. [23] Online Encyclopedia of Integer Sequences, http: 
  24. [24] Ostermeier, P.-J., et al., A note on quasi-robust cycle bases, Ars. Math. Contemp.2 (2009) 231-240. Zbl1216.05019
  25. [25] Reshnikov and Turaev?, Ribbon categories?, AMS, 2005? 
  26. [26] Shields, I., Shields, B. J., Savage, C. D., An update on the middle levels problem, 309 (2009) 5271-5277. Zbl1178.05058
  27. [27] Spanier, E. H., Algebraic topology, McGraw-Hill, NY, 1966. Zbl0145.43303
  28. [28] Stewart, I., Golubitsky, M., and Pivato, M., Symmetry groupoids and patterns of synchrony in coupled cell networks, SIAM J. Appl. Dyn. Syst., 2:4 (2003) 609-646. Zbl1089.34032
  29. [29] Toffoli, T., Reversible computing, MIT/LCS/TM-151, preprint from http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TM-151.pdf 
  30. [30] Weinstein, A., Groupoids: Unifying internal and external symmetry, Notices A.M.S.43:7 (1996) 744-752. Zbl1044.20507

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.