Tree algebra of sofic tree languages
Nathalie Aubrun; Marie-Pierre Béal
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (2014)
- Volume: 48, Issue: 4, page 431-451
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] N. Aubrun and M.-P. Béal, Decidability of conjugacy of tree-shifts of finite type. In ICALP ’09: Proc. of the 36th International Colloquium on Automata, Languages and Programming. Springer-Verlag Berlin, Heidelberg (2009) 132–143. Zbl1248.68283MR2544841
- [2] N. Aubrun and M.-P. Béal, Sofic and almost of finite type tree-shifts. In 5th International Computer Science Symposium in Russia, (CSR’10), edited by E. Mayr and F. Ablayev, number 6072 in Lect. Notes Comput. Sci. Springer-Verlag (2010) 12–24. Zbl1285.68078MR2972321
- [3] N. Aubrun and M.-P. Béal, Tree-shifts of finite type. Theoret. Comput. Sci.459 (2012) 16–25. Zbl1279.68128MR2974235
- [4] N. Aubrun and M.-P. Béal, Sofic tree-shifts. Theory Comput. Syst.53 (2013) 621–644. Zbl1293.68195MR3084356
- [5] M.-P. Béal, F. Fiorenzi and D. Perrin, A hierarchy of shift equivalent sofic shifts. Theoret. Comput. Sci.345 (2005) 190–205. Zbl1079.68048MR2171610
- [6] M. Bojanczyk, Algebra for Trees. In Handbook of Automata Theory. To appear in EMS Publishing.
- [7] M. Bojanczyk, Effective characterizations of tree logics. Tutorial at PODS 2008 (2008).
- [8] M. Bojanczyk, L. Segoufin and H. Straubing, Piecewise testable tree languages. In LICS (2008) 442–451. Zbl1261.03126MR2987919
- [9] M. Boyle, B. Kitchens and B. Marcus, A note on minimal covers for sofic systems. Proc. Amer. Math. Soc.95 (1985) 403–411. Zbl0606.28016MR806078
- [10] T. Ceccherini–Silberstein, M. Coornaert, F. Fiorenzi and Z. Sunic, Cellular automata on regular rooted trees. In CIAA2012 (2012) 101–112. Zbl1297.68175MR2993177
- [11] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison and M. Tommasi, Tree automata techniques and applications. Available on: http://www.grappa.univ-lille3.fr/tata, release October, 12th (2007).
- [12] A. de Luca and A. Restivo, A characterization of strictly locally testable languages and its applications to subsemigroups of a free semigroup. Inform. Control44 (1980) 300–319. Zbl0441.68087MR574489
- [13] G. Fici and F. Fiorenzi, Topological properties of cellular automata on trees. In DCM (2012) 255–266.
- [14] U. Heuter, Definite tree languages. Bulletin of the EATCS35 (1988) 137–142. Zbl0676.68027
- [15] U. Heuter, Generalized definite tree languages. In Mathematical Foundations of Computer Science 1989 (Pora¸bka-Kozubnik, 1989), vol. 379 of Lect. Notes Comput. Sci. Springer, Berlin (1989) 270–280. Zbl0755.68087MR1036806
- [16] E. Jeandel and G. Theyssier, Subshifts, languages and logic. In Developments in Language Theory, 13th International Conference, DLT 2009, Stuttgart, Germany, June 30 - July 3, 2009. Proceedings, vol. 5583 of Lect. Notes Comput. Sci. Springer (2009). Zbl1247.03068MR2544709
- [17] D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge (1995). Zbl1106.37301MR1369092
- [18] M. Nivat and A. Podelski, Definite tree languages. Bulletin of the EATCS38 (1989) 186–190. Zbl0677.68066
- [19] T. Place and L. Segoufin, A decidable characterization of locally testable tree languages. In ICALP (2), Lect. Notes Comput. Sci. Springer (2009) 285–296. Zbl1248.68313MR2544803
- [20] S. Salehi, A completeness property of wilke’s tree algebras. In MFCS, vol. 2747 of Lect. Notes Comput. Sci. Springer (2003) 662–670. Zbl1124.68389MR2081616
- [21] J. Verdú-Mas, R. Carrasco and J. Calera–Rubio, Parsing with probabilistic strictly locally testable tree languages. IEEE Trans. Pattern Anal. Mach. Intell.27 (2005) 1040–1050.
- [22] T. Wilke, An algebraic characterization of frontier testable tree languages. Theoret. Comput. Sci.154 (1996) 85–106. Zbl0871.68110MR1374381