Existence of an infinite ternary 64-abelian square-free word
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (2014)
- Volume: 48, Issue: 3, page 307-314
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] J.-P. Allouche and J. Shallit, Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press (2003). Zbl1086.11015MR1997038
- [2] G. Badkobeh and M. Crochemore, Finite-Repetition threshold for infinite ternary words, in 8th International Conference WORDS 2011, edited by P. Ambroz, S. Holub and Z. Masáková. EPTCS 63 (2011) 37–43. Zbl1331.68160
- [3] J. Cassaigne, Unavoidable binary patterns. Acta Informatica30 (1993) 385–395. Zbl0790.68096MR1227889
- [4] C. Choffrut and J. Karhumäki, Combinatorics of words, in vol. 1 of Handbook of Formal Languages, edited by G. Rozenberg and A. Salomaa. Springer (1997) 329–438. Zbl0866.68057MR1469998
- [5] K. Culik, J. Karhumäki and A. Lepistö, Alternating iteration of morphisms and the Kolakoski sequence, in Lindenmayer Systems, edited by G. Rozenberg and A. Salomaa. Springer (1992) 93–106. Zbl0766.68073MR1226686
- [6] J.D. Currie, Open problems in pattern avoidance. Amer. Math. Monthly100 (1993) 790–793. Zbl0798.68139MR1542406
- [7] F.M. Dekking, Strongly non-repetitive sequences and progression-free sets. J. Combin. Theory Ser. A27 (1979) 181–185. Zbl0437.05011MR542527
- [8] A.A. Evdokimov, Strongly asymmetric sequences generated by a finite number of symbols. Dokl. Akad. Nauk SSSR 179 (1968) 1268–1271; English translation in Soviet Math. Dokl. 9 (1968) 536–539. Zbl0186.01504MR234842
- [9] M. Huova and J. Karhumäki, On Unavoidability of k-abelian Squares in Pure Morphic Words. J. Integer Sequences, being bublished. Zbl1285.68135
- [10] M. Huova, J. Karhumäki and A. Saarela, Problems in between words and abelian words: k-abelian avoidability, in Formal and Natural Computing Honoring the 80th Birthday of Andrzej Ehrenfeucht, edited by G. Rozenberg and A. Salomaa. Theoret. Comput. Sci. 454 (2012) 172–177. Zbl1280.68149MR2966632
- [11] M. Huova, J. Karhumäki, A. Saarela and K. Saari, Local squares, periodicity and finite automata, in Rainbow of Computer Science, edited by C.S. Calude, G. Rozenberg and A. Salomaa. Vol. 6570 of Lect. Notes Comput. Sci. Springer (2011) 90–101. Zbl1327.68182MR2805552
- [12] V. Keränen, Abelian squares are avoidable on 4 letters, in Proc. ICALP 1992, edited by W. Kuich. Vol. 623 of Lect. Notes Comput. Sci. Springer (1992) 41–52. MR1250629
- [13] M. Lothaire, Combinatorics on words, Addison-Wesley (1983). Zbl0514.20045MR675953
- [14] M. Lothaire, Algebraic combinatorics on words. Cambridge University Press (2002). Zbl1221.68183MR1905123
- [15] R. Mercas and A. Saarela, 5-abelian cubes are avoidable on binary alphabets, in the conference the 14th Mons Days of Theoretical Computer Science (2012). Zbl06182460
- [16] P.A.B. Pleasant, Non-repetitive sequences. Proc. Cambridge Philos. Soc.68 (1970) 267–274. Zbl0237.05010MR265173
- [17] A. Thue, Über unendliche Zeichenreihen. Norske vid. Selsk. Skr. Mat. Nat. Kl. 7 (1906) 1–22. JFM39.0283.01
- [18] A. Thue, Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske vid. Selsk. Skr. Mat. Nat. Kl. 1 (1912) 1–67. Zbl44.0462.01JFM44.0462.01