Abelian pattern avoidance in partial words
F. Blanchet-Sadri; Benjamin De Winkle; Sean Simmons
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (2014)
- Volume: 48, Issue: 3, page 315-339
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] J. Berstel and L. Boasson, Partial words and a theorem of Fine and Wilf. Theoret. Comput. Sci.218 (1999) 135–141. Zbl0916.68120
- [2] F. Blanchet-Sadri, Algorithmic Combinatorics on Partial Words. Chapman & Hall/CRC Press, Boca Raton, FL (2008). Zbl1180.68205
- [3] F. Blanchet-Sadri and S. Simmons, Abelian pattern avoidance in partial words, in MFCS 2012, 37th International Symposium on Mathematical Foundations of Computer Science. Edited by B. Rovan, V. Sassone and P. Widmayer. Vol. 7464 of Lect. Notes Comput. Sci. Springer-Verlag, Berlin (2012) 210–221. Zbl06086223
- [4] F. Blanchet-Sadri, J.I. Kim, R. Mercaş, W. Severa, S. Simmons and D. Xu, Avoiding abelian squares in partial words. J. Combin. Theory, Ser. A 119 (2012) 257–270. Zbl1233.68183
- [5] F. Blanchet-Sadri, A. Lohr and S. Scott, Computing the partial word avoidability indices of binary patterns. J. Discrete Algorithms23 (2013) 113–118 Zbl1334.68166
- [6] F. Blanchet-Sadri, A. Lohr and S. Scott. Computing the partial word avoidability indices of ternary patterns. J. Discrete Algorithms23 (2013) 119–142 Zbl1334.68167
- [7] F. Blanchet-Sadri, S. Simmons and D. Xu, Abelian repetitions in partial words. Adv. Appl. Math.48 (2012) 194–214. Zbl1231.68187MR2845515
- [8] J.D. Currie, Pattern avoidance: themes and variations. Theoret. Comput. Sci.339 (2005) 7–18. Zbl1076.68051MR2142070
- [9] J. Currie and V. Linek, Avoiding patterns in the abelian sense. Can. J. Math.53 (2001) 696–714. Zbl0986.68103MR1848503
- [10] J. Currie and T. Visentin, On abelian 2-avoidable binary patterns. Acta Informatica43 (2007) 521–533. Zbl1111.68094MR2309577
- [11] J. Currie and T. Visentin, Long binary patterns are abelian 2-avoidable. Theoret. Comput. Sci.409 (2008) 432–437. Zbl1171.68034MR2473917
- [12] F.M. Dekking, Strongly non-repetitive sequences and progression-free sets. J. Combin. Theory, Ser. A 27 (1979) 181–185. Zbl0437.05011MR542527
- [13] P. Erdős, Some unsolved problems. Magyar Tudományos Akadémia Matematikai Kutató Intézete Közl.6 (1961) 221–254. Zbl0100.02001
- [14] V. Keränen, Abelian squares are avoidable on 4 letters, in ICALP 1992, 19th International Colloquium on Automata, Languages and Programming. Edited by W. Kuich, vol. 623 of Lect. Notes Comput. Sci. Springer-Verlag, Berlin (1992) 41–52. MR1250629
- [15] P. Leupold, Partial words for DNA coding, in 10th International Workshop on DNA Computing. Edited by G. Rozenberg, P. Yin, E. Winfree, J.H. Reif, B.-T. Zhang, M.H. Garzon, M. Cavaliere, M.J. Pérez-Jiménez, L. Kari and S. Sahu. Vol. 3384 of Lect. Notes Comput. Sci. Springer-Verlag, Berlin (2005) 224–234. Zbl1116.68462MR2179040
- [16] M. Lothaire, Algebraic Combinatorics on Words. Cambridge University Press, Cambridge (2002). Zbl1221.68183MR1905123
- [17] P.A.B. Pleasants, Non repetitive sequences. Proc. Cambridge Philosophical Soc.68 (1970) 267–274. Zbl0237.05010MR265173
- [18] A. Thue, Über unendliche Zeichenreihen. Norske Vid. Selsk. Skr. I, Mat. Nat. Kl. Christiana 7 (1906) 1–22. JFM37.0066.17